
Generating Massive High-Quality Random Numbers using GPU

Wai-Man Pang Tien-Tsin Wong Pheng-Ann Heng

Abstract— Pseudo-random number generators (PRNG) have

been intensively used in many stochastic algorithms in artificial

intelligence, computer graphics and other scientific computing.

However, the current commodity GPU design does not facilitate

the efficient implementation of high-quality PRNGs that require

high-precision integer arithmetics and bitwise operations. In

this paper, we propose a framework to generate a high-quality

PRNG shader for all kinds of GPUs. We adopt the cellular

automata (CA) PRNG to facilitate high speed and parallel

random number generation. The configuration of the CA PRNG

is completed automatically by optimizing an objective function

that accounts for quality of generated random sequences. To

visually evaluate the result, we apply the best PRNG shader to

photon mapping. Timing statistics show that our GPU paral-

lelized PRNG is much faster than a pure CPU implementation.

I. INTRODUCTION

U
NIFORMLY distributed random numbers are essen-

tial in many evolutionary computing algorithms. It is

important that they are high quality and can be generated

quickly. Moreover, a huge amount of random numbers is

usually required in the process. Therefore, a natural and

practical solution to generate these random numbers is

using the programmable graphics processing unit (GPU),

which is commonly equipped on ordinary PCs nowadays.

GPU is a SIMD-based parallel processor tailormade for

graphics programming. Unfortunately, current GPUs are not

provided with any high-quality pseudo-random number gen-

erator (PRNG). A direct porting of most conventional PRNG

to GPU is not feasible, because most current GPUs does not

support high-precision integer arithmetics and native bitwise

operations. For example, the rand() in standard C library is

an implementation of linear congruential generator (LCG)

which requires high-precision integer arithmetics like 32 or

64-bit modulo.

The quality of random numbers produced is an essential

property for any PRNG, it can directly affect the result or

convergence rate of certain stochastic algorithms. However,

it is difficult to evaluate the quality of random sequences

produced by PRNGs analytically. Moreover, the way of using

random sequence can significantly affect the randomness

provided by a PRNG, including actual used bits of random

numbers and PRNG on parallel computers [1]. Therefore,

people rely on testing the length of repeating cycle and the

correlation between sub-sequences under many utilization

scenarios, in order to empirically examine the qualities.

Speed is another important concern when designing

PRNG, especially for real-time applications like scientific

The authors are with Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
(email: {wmpang, ttwong, pheng}@cse.cuhk.edu.hk)

systems or games. They usually cannot afford a heavy load-

ing PRNG. Therefore, we propose a fast GPU-based PRNG

which generates thousands of pseudo random numbers in

parallel. Our PRNG is based on cellular automata (CA).

CA-based PRNG does not require high-precision integer

arithmetics nor bitwise operations. It relies only on simple

low-precision arithmetic and interconnection of cells (pixels).

Therefore, it fits nicely to the architecture of the GPU. The

quality of PRNG is ensured by optimizing the CA-based

PRNG model, so that random sequences have long repeating

cycle and low correlations among themselves. Experiments

show that our GPU-based CA-PRNG is significantly faster

than a pure CPU-based one.

II. RELATED WORK

The generation of uniformly distributed random number

sequence has been actively studied in the last decade. Algo-

rithms like linear congruential generator, lagged Fibonacci

generator, linear feedback shift register generator [2] usually

require very simple arithmetics such as addition, modulo or

bitwise operations. However, many of these early PRNG have

deficiencies [3], [4], [5]. Modern PRNG like the Mersenne

Twister [6] does not suffer from these deficiencies, but it is

more complex and depends heavily on bitwise operations.

CA-based PRNG is proposed by Wolfram [7]. The first

suggested CA-based PRNG is a 1D cellular automata with a

neighborhood size of three. Because of the simple structure

but amazing randomness it produces, CA-based PRNG is

being studied thoroughly, especially in the area of hardware

implementation of PRNG. Other efficient models of CA-

based PRNG have been proposed [8], [9]. Because of its

strong randomness and not requiring high-precision integer

arithmetics nor bitwise operations, we choose CA-based

PRNG for the GPU implementation.

Many large-scale Monte Carlo simulations run on parallel

computers, generating random numbers in parallel manner

is another widely discussed topic [10], [11]. Common meth-

ods include cycle division and sequence splitting to divide

the original serial sequence into separated ones and run

on different processors [1]. Two quality requirements are

especially important for parallel PRNG, these include the

intra-stream and inter-stream correlations. The intra-stream

correlation refers to the correlation within a random sequence

produced from the same processor. While the inter-stream

correlations are between sequences from different processors.

Many of the traditional PRNGs fail to work well under a

parallel environment, especially suffer from the inter-stream

correlation [11].

841

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

III. CA-BASED PRNG

A. Basics

CA-based PRNG was first proposed by Wolfram [7].

The basic structure of CA-based PRNG is analogous to

a generic cellular automata. An example is illustrated in

Figure 1. It consists of an array of interconnected cells,

each with homogeneous behavior. Each cell holds a cell

state which corresponding to a particular bit in the generated

random number. Therefore, the number of cells have to be

adjusted depending on the possible outcomes of random

numbers. Usually, the number of cells used will be larger

than the number of bits required for the random number. Only

selected bits are outputted, this brings better randomness [7].

The connectivity among interconnected cells is defined

local to the cell. We consider a simple CA of only 4 cells,

namely A, B, C, and D in Figure 1. Each cell connects

to its left cell and the second right cell, in this case the

connectivity is denoted as (-1,2). Notice that the connectivity

wraps around when connected to an out-of-boundary cell. For

example, left connection of cell A goes to cell D and cell

D’s second right connection should be cell B.

A cell equation Φ is defined for all cells in a CA-based

PRNG. Each time the next random number is generated, each

cell updates its own state by computing this cell equation Φ
at the same time. As illustrated in Figure 2, the cell equation

Φ takes cell state values ci from its connected neighbors

as input parameters, and output a single bit as the cell

state. The cell equation can be represented mathematically

as Equation 1. cg
i represents the i-th cell state at the g-

th iteration and nj means the offset to the j-th connected

neighbors. Notice that the neighborhood of a cell can include

the cell itself. In addition, the input neighboring cell state

values ci all come from previous cell state (g − 1) only,

so there is no ambiguity during simultaneous update of cell

states. After all cells update their states, a new random

number is obtained by collecting the bits scattered among

the cells.
cg
i = Φ(cg−1

i+n0
, cg−1

i+n1
, ..., cg−1

i+nj
) (1)

We demonstrate with a 4-cell PRNG in Figure 3 to clarify

the mechanism of random number generation from CA-based

PRNG. This 4-cell PRNG outputs a 3-bit random number

by gathering the state values from cells A, C and D. The

cell connectivity and cell equation is defined as (-1,2) and

Φ = step(1, 3− c
−1 − 2c2). Function step(a, x) returns 1 if

x ≥ a , otherwise 0. Similar to all other PRNGs requiring an

initial seed, CA-based PRNG also requires an initialization

of cell states. We can simply initialize them with arbitrary

bits as in Figure 3(a).

In the process of producing the next random number, all

cell states are updated simultaneously. The first computed

result and the corresponding new random number is shown

in Figure 3(b). Therefore, cell A has cells C and D as its

neighbors. By passing the previous state values of cell C

and D, that is 0 and 1 respectively (Figure 3(a)), to the cell

equation Φ; it updates the state of cell A to 1, as shown in

Figure 3(b). Other cells work similarly and simultaneously.

Fig. 1. A four-cell CA-based PRNG with connectivity of (-1,2). Connec-
tions are wrap-around.

When all cell states are updated using the cell equation, a

new random number can be obtained by collecting the cell

states of A, C and D, with state of cell A as the MSB and

state of cell D as the LSB. Hence we get a random number

of 111 = 7 (Figure 3(b)). Repeating the same process will

generate the next random number. Figure 3(c) shows one

more iteration and the corresponding random number is 011

= 3.

The structural design of CA-based PRNG is rather simple

and very suitable to be implemented on GPU. Especially,

all cells are working homogeneously and independently fits

nice to the GPU architecture. In the following section, we are

going to discuss issues concerning the GPU implementation

in more details.

Fig. 2. An example cell of CA-based PRNG.

Fig. 3. Three iterations of generating 3-bit random number with the 4-cell
CA-based PRNG.

B. Shader Implementation

The GPU implementation of CA-based PRNG as a shader

is straight-forward. Each cell resembles to a texel in the

texture, while the cell equation Φ is computed inside the

shader code. The connectivity of neighboring cells is done

based on texture reference. Since cells are independent of

each other, it works in a similar manner as the fragment

shader in GPUs. The pseudo fragment shader code in Al-

gorithm 1 demonstrated an implementation of the CA-based

842 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

PRNG. Sample Cg shader programs of CA-based PRNG can

be found in the appendix.

Algorithm 1 Pseudo code of CA-based PRNG Shader

% Collect all the neighboring cell states
Foreach n in neigbhors

nbrTexcoord← (texcoord− n) mod CA SIZE
nbrCellstates[n]← texRECT (cells, nbrTexcoord)

End Foreach
% Call the cell equation here
newCellState← celleqn(nbrCellstates);

In Algorithm 1, the cells is the 2D texture storing all the

cell states in previous iteration. It is initialized with arbitrary

values assigned by user or randomly before executing the

shader. The neighbors here represents the connectivity con-

figuration, for example, it is (-1,2) in the CA-based PRNG

demonstrated in Figure 3. First, the shader fetches the neigh-

bor cell states by offsetting the current texture coordinate

according to the connectivity configuration (neighbors). By

offsetting current texture coordinate (texcoord) by n, we

have the correct texture coordinate of the neighbor cell

states. Since the connectivity is wrap-around when out of

boundary, we need to modular it by number of cellular-

automata (CA SIZE). Then, all the neighbor cell states are

put in the array nbrCellstates.

Passing all collected previous cell states from the neigh-

bors (nbrCellstates) to the cell equation (celleqn), the re-

turned value is the new state of current cell (newCellState).

This is stored to the output texture and the roles of

newCellState and cells are then interchanged in the next

iteration.

The computation of cell equation can be performed in

fragment shader. In fact, we speed up the evaluation of

cell equation by replacing complicated cell equation with

a lookup table. Since the cell equation is actually a mapping

of neighbor cell states to an output state which is either 1

or 0, we can precompute the cell equation and store it in a

lookup table (texture) to achieve a speed-up.

A straightforward implementation is to use a n-

dimensional texture if there are n neighbor connections.

However, high-dimensional table is currently not supported

on GPU if the table dimension exceeds 3. Alternatively, we

can pack the n bits to form a n-bit index and the precomputed

values are stored in a 1D texture only. In a 4-connected CA-

based PRNG, we need only 24 = 16 different output states,

so a 16-entry lookup table is sufficient. Figure 4 shows the

organization of cell states (cell) and lookup tables (eqnLUT)

in texture.

Figures 4(a) and 4(b) show the data organization of the 64

cell states in textures (cells) and the 16-entry lookup table

(eqnLUT) respectively. The state of cells are tightly packed

and stored in a texture. The random number is formed by

packing the 32 cell states as in Figure 4(c).

As the bits of random number being generated are scat-

tered among different cells (texels), we have to reorganize

them to form the 32-bit integer number. However, GPU does

cells:

eqnLUT:

0 1 0

(0,0)Texture coordinate : (1,0)

0 11

(63,0)(62,0)

Cell 0 Cell 1 Cell 2

(2,0) (3,0)

Cell 3 Cell 63Cell 62

1 0 1

(a)

(b)

(0,0)Texture coordinate : (1,0) (15,0)

(0,0,0,0)
Cell equation
input parameters : (0,0,0,1)

0
(0,0,1,0)

(2,0)

(1,1,1,1)

LSBMSB

1 0 0 11

(c)

Cell 1 Cell 3 Cell 5 Cell 61 Cell 63MSB

Texture coordinate : (1,0) (3,0) (5,0) (61,0) (63,0)

LSB

Random number
formation:

cells:

eqnLUT:

0 1 0

(0,0)Texture coordinate : (1,0)

0 11

(63,0)(62,0)

Cell 0 Cell 1 Cell 2

(2,0) (3,0)

Cell 3 Cell 63Cell 62

1 0 1

(a)

(b)

(0,0)Texture coordinate : (1,0) (15,0)

(0,0,0,0)
Cell equation
input parameters : (0,0,0,1)

0
(0,0,1,0)

(2,0)

(1,1,1,1)

LSBMSB

1 0 0 11

(c)

Cell 1 Cell 3 Cell 5 Cell 61 Cell 63MSB

Texture coordinate : (1,0) (3,0) (5,0) (61,0) (63,0)

LSB

Random number
formation:

Fig. 4. Data organization in the textures for a 4 connected 64 cells CA-
based PRNG. (a) Cell organization and (b) lookup table for evaluating the
cell equation. (c) Formation of random number by 32 cell states.

not support high-precision integer values, we need to use

floating point to hold the high-precision integer for output.

One way to do so is to convert the generated random number

bits, ri, to a floating point value, f , as Equation 2. The

corresponding shader (pack) can refer to appendix.

f = (((r0/2) + r1)/2 + ... + r31)/2 (2)

Another way to store the random numbers is directly

storing all the bits inside the floating point values by using

the mantissa part only. Since each floating point has 23-bit for

mantissa, each pixel can store two 32-bit random numbers

instead of 4. Then, each 32-bit integer random number is

repacked in CPU.

IV. QUALITY OPTIMIZATION

The particular connectivity and cell equation demonstrated

in Figure 3 is only one of the many possible configurations.

There are many possible configurations of a CA-based PRNG

and they affect the quality of random numbers generated.

The variable factors include connectivity, cell equation and

even the number of cells used. However, it is difficult to find

the best configuration analytically. The number of possible

configurations increases exponentially with the number of

cell and number of connectivities used. Therefore, searching

a good configuration by brute-force searching is not effective.

We can employ an optimization method based on heuristic

to improve the searching speed.

In order to make the optimization problem tractable. We

fixed the size of CA to be 64 and the number of neigh-

borhood to 4. Only even-numbered cells are extracted to

form a random number. The neighborhood connection and

cell equation Φ is left to the optimization. We find that this

restriction does not affect much the quality of PRNG but it

substantially reduces the search space.

We encode each CA-based PRNG candidate by its con-

nectivities and cell equation. As the cell equation can be

represented with a lookup table in 2n bits, where n is the

connectivities; therefore, 2n +n bits are sufficient to encode

a candidate.

Then, the optimization is carried out using genetic al-

gorithm. The objective function is defined to evaluate the

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 843

quality of generated random sequence. The optimization

starts from an initial population of candidates with different

configurations. In each generation, candidate with the highest

score is chosen as the best candidate.

Next, a new population is generated using crossover and

mutation operators. Crossover tries to combine features from

2 selected parents to reproduce a new one. The crossover

point is randomly chosen within the cell equation Φ. Mu-

tation picks a selected candidate and randomly alters the

cell equation. The selection of parent candidates is based

on tournament scheme. It first chooses a subset of candi-

dates randomly, then the best candidate within the subset is

selected for crossover. The new population is again evaluated

using the objective function, the process repeats until certain

number of generations is reached or the result converges.

A. Objective Function

The definition of objective function is the most essential

part in our optimization framework, because it directly affects

the final results. The objective function is :

objective = w0 × e + w1 × ϕ (3)

where e is the entropy, ϕ is the overall p-value from

random number quality test. w0 and w1 are weights (w0 =
0.5, w1 = 0.5). Higher weights should be given to w1 for

scientific applications.

Entropy e is the normalized k-bit entropy computed from

sub-sequences of random numbers [12],

e =
−

∑2
k
−1

i=0
pi log pi

k
(4)

where pi is the occurrence of the binary value of sub-

sequence i. In our experiments, 16-bit entropy is used.

Therefore, we get i by extracting 32 different 16-bits sub-

sequences from the 32-bits generated random number (bits

are wrap-around when out-of-boundary).

Besides entropies, there is an even more robust empirical

test designed for measuring the quality of random sequences.

It is called the DIEHARD test [13]. ϕ is the overall p-value

from DIEHARD. It is a set of stringent tests [2] which is a

more strict test specific for random number sequences. The

DIEHARD suite has totally 14 tests, namely birthday spacing

test, GDC Test, gorilla test, overlapping permutation test,

rank of matrix test, monkey test, count the 1’s test, parking lot

test, minimum distance test, random sphere test, squeeze test,

overlapping sums test, runs up and down test and the craps

test. The basic idea of these tests are similar. First, they try to

extract various subsets of bits in the random sequences. Then,

certain transform will be applied to these sub-bits sequences.

Chi-square test is used to see if the resulted distribution

follows the expected one. The Chi-square χ2 is calculated

by finding the square of difference between observed Oi

and expected Ei frequency, divided by expected frequency.

Summation of all the results gives χ2 in Equation 5 :

χ2 =
∑

i

(Oi − Ei)
2

Ei

(5)

A p-value ∈ [0, 1] can then be computed for each test

based on the Chi-square result. The better matching with the

expected model, the higher the p-value. A zero p-value means

a totally non-uniform distribution and one is considered as

too uniform. An overall p-value is computed by performing

another Chi-square test on all the p-values, to see if it

matches with a Gaussian distribution. The higher the overall

p-value, the better the PRNG quality is.

V. MULTIPLE RANDOM SEQUENCES GENERATION

Implementing single CA-based PRNG shader is simple,

but it does not fully utilize the capability of current GPUs.

If a 64-cell CA-based PRNG is used and each cell stores

one bit in a texel, we will only need a 64 by 1 texture

to complete the task. However, current GPU are capable

for texture with hundred thousands of texels, it is a waste

of the GPU power and capabilities. Besides, it is common

that tremendous amount of random numbers is required,

especially in scientific simulations. It is attractive if we can

run multiple random number generators in parallel. Here we

suggest two ways to embed more random number generators

in a single iteration.

One of the approaches is to fully use all texels in texture al-

lowed by the hardware, which is supposed to be 4096×4096

texels in a texture in GPUs (Geforce 7 series). As shown

in Figure 5(a), each texel stores only a single cell state,

while we spread the states of all three 4-cell PRNG in 12

different texels. If we use a 64-cell CA-based PRNG, we can

at most store 64×4096 random numbers in a single texture.

This extension is relatively simple and straight-forward, we

just need to allocate and initialize a larger texture to store

multiple cells from different PRNG, and no modification of

shader code is required.

The second approach is to embed multiple PRNG cell

states in a single texel. In Figure 5(b), multiple PRNGs’ cell

states are embedded in a texel. In the discussion so far, we

only use a texel to represent a single cell state which only

occupies a single bit. While a texel consists of at most 4

floating point numbers corresponding to at most 128-bit. It

will be challenging to fully exploit the capability of a texel

allowed. Therefore, we only use the mantissa part of the

4 floating units. That means we can have 23×4 (92) cell

states from different parallel PRNGs in a single texel. This

will require a function to extract a single bit (bit) from the

floating-point texel. To do so, we first right shift the number

by b bits, it is equivalent to divide by 2b. Then, the last bit of

this number is what we wanted. We can perform modulo of 2

to get it. The shader implementation can refer to (getBit)

in appendix.

bit = (number/2b) mod 2 (6)

Obviously, the two approaches can be used simultane-

ously without conflict, and therefore we can have at most

64×4096×92 parallel PRNGs for a Geforce7 series GPU

. To support this parallelization, we only need to slightly

modify shader in order to collect all the cell states of the

same PRNG.

844 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

1 1 0 0

0 1 1 0

0 1 0 1

PRNG1:

PRNG2:

PRNG3:

1
TEX0

0
TEX2

1
TEX1

0
TEX3

1 0 0

TEX0

1 1 0

TEX2

1 1 1

TEX1

1 0 1

TEX3

! !

0
TEX4

1
TEX6

1
TEX5

0
TEX7

0
TEX8

0
TEX10

1
TEX9

1
TEX11

Cells Texture

! !

Cells Texture

(a) (b)

Fig. 5. Two different approaches to parallelize random number generations
in GPU. (a) Each texel stores a single cell state, and uses up all available
texels. (b) Each texel embeds more than one cell state from different PRNGs.

To tightly pack the bit pattern of a n-bit random number

into the output texture, we try to use 92 bits in each pixel.

We take 23-bit as a unit, and embed all the bits inside them.

Algorithm 2 shows the pseudo code for the arrangement of

bits in shader. The basic procedure is to collect proper bits

from various texels.

Algorithm 2 Function to tighly pack random bits scattered

in different texels

stridesize← �BitUsed/BitsPerP ixel�
Foreach i from 0 to BitsPerP ixel

output← output× 2
output← output+

texRECT (i× 2 + 1 + (index.x mod stridesize))
×BitsPerP ixel× 2

End Foreach

Here the BitUsed is our target precision. BitsPerP ixel
is the maximum bits a single component in pixel can store,

here we use 23 which is the mantissa part of the floating

point.

VI. RESULTS

A. Quality

To validate and visualize the improvements in quality

of the CA-based PRNG during optimization, we test the

generated random numbers in a graphics application, photon-

mapping [14]. It simulates the light propagation by emitting

virtual photons in random directions. Poor randomness will

significantly slow down the convergence rate in energy dis-

tribution to the environment, and hence affect the rendering

quality. Therefore, our first experiment compares the visual

quality of rendering results from different PRNG shaders

to reveal how the quality of PRNG is changed in each

generation. The best candidate (i.e. highest objective) in

different generations are selected to provide random numbers

for the photon emission.

Figures 6 and 7 show two sets of rendering results. In

Figure 6, caustics is formed due to the crystal torus placed

under an area light source at the ceiling. Images from (a)

to (e) are rendered with the best PRNG shaders from the

generations 1, 2, 4, 8 and 11. 16,000 photons are transmitted

in all cases. Figure 6(f) shows the control image generated

with 100,000 photons.

It is obvious that results from generations 1,2 and 4 are

far from converged, but we can see the results are improving

Parameter Value

Mutation 0.1
Crossover 0.9

Population size 1500
Num. of generations 20

TABLE I

PARAMETER USED IN THE OPTIMIZATION.

visually. The improvement is confirmed by the statistics

measured in PSNR. The results start to converge much faster

after generation 8, no large visual difference is observable

between Figure 6(e) and the control image (Figure 6(f)).

The same set of PRNG is further applied in another scene

shown in Figure 7. A single point light on the right cast caus-

tics inside the ring. Again, all images from Figure 7(a) to (e)

are rendered with same number of photons, that is 200,000

in this case. Comparing to the control image produced using

500,000 photons, we observe similar improvement as in the

previous scene. The convergence gradually improves in each

generation and so as the quality of PRNG. This demonstrates

that our optimization framework effectively improving the

generated shader. Table I shows the parameters we used.

From the experiments, we found the best 4-connected

64 cells CA-based PRNG is having connectivity as

(56,2,21,49) and the cell equation in tightly packed format

is (1001100110100101).
B. Timing Statistics

Most of the GPU applications suffer from the significant

overhead introduced in each pass of shader. These overheads

include the cost of setup and texture retrieval. This also

applies to our GPU CA-based PRNG, it is not cost effective

to produce just a single random sequence on GPU comparing

to a pure CPU implementation. Table II shows the timing

statistics for generating only single sequence of random

numbers on GPU and CPU. The test is performed on a PC

with Pentium IV 3.2 GHz CPU and Geforce 7800 GTX GPU.

Time (in second)
Random numbers CPU GPU CPU to GPU

generated CA-PRNG CA-PRNG Ratio

1,000 0.004 0.064 0.0625

10,000 0.042 0.942 0.0446

100,000 0.391 10.081 0.0388

1,000,000 4.163 100.082 0.0416

TABLE II

SPEED COMPARISON FOR SINGLE SEQUENCE GPU AND PURE CPU

CA-BASED PRNGS.

Our major performance gain comes from running multiple

instances of random number generators in parallel. Table III

shows the running time for a CPU multi-sequence CA-based

PRNG and the GPU version of the same multi-sequence CA-

based PRNG. We list their times (in second) for generating

certain numbers of random numbers. Both PRNGs generate

1000 random sequences simultaneously.

From the statistics profile, we can observe the speed of a

GPU version CA-PRNG is roughly 13 times faster than the

pure CPU counterpart. The performance gain will be even

larger if more random sequences are generated in parallel.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 845

Time (in second)
Random numbers CPU GPU CPU to GPU

generated CA-PRNG CA-PRNG Ratio

10,000 0.043 0.004 10.750

100,000 0.425 0.031 13.710

1,000,000 4.274 0.310 13.787

10,000,000 43.003 3.098 13.881

100,000,000 430.002 31.875 13.490

TABLE III

SPEED COMPARISON FOR GPU AND PURE CPU PARALLEL CA-BASED

PRNGS. 1000 RANDOM NUMBERS ARE GENERATED IN PARALLEL. GPU

IMPLEMENTATION IS ROUGHLY 13 TIMES FASTER.

VII. CONCLUSION

We propose using CA-based PRNG to generate random

sequences on GPU. By exploiting the homogeneous cell

behavior of CA-based PRNG, we successfully avoid high-

precision integer operations and bitwise operations for gener-

ating high-quality random numbers. Acceleration is achieved

by using LUT for the cell equations and parallel processing

of cell units. Experiments show that parallelized version

on GPU can achieve significant performance gain than a

pure software implementation. The generated sequences are

statistically evaluated to possess a better quality than those

from the popular LCG-based PRNG. We believe it will be

beneficial to many evolutionary computing and any stochastic

algorithms requiring massive amount of high-quality random

numbers.
ACKNOWLEDGMENT

This project is supported by the Research Grants Council of the

Hong Kong Special Administrative Region, under RGC Earmarked

Grants (Project No. CUHK416806). This work is affiliated with the

CUHK Virtual Reality, Visualization and Imaging Research Centre

as well as the Microsoft-CUHK Joint Laboratory for Human-Centric

Computing and Interface Technologies.

REFERENCES

[1] A. Srinivasan, M. Mascagni, and D. Ceperley, “Testing parallel random
number generators,” Parallel Comput., vol. 29, no. 1, pp. 69–94, 2003.

[2] D. E. Knuth, Seminumerical Algorithms, 3rd ed., ser. The Art of
Computer Programming. Reading, Massachusetts: Addison-Wesley,
1998, vol. 2, ch. 3.

[3] K. Entacher, “A collection of selected pseudorandom number genera-
tors with linear structures,” 1997.

[4] M. D. MacLaren and G. Marsaglia, “Uniform random number gener-
ators,” J. ACM, vol. 12, no. 1, pp. 83–89, 1965.

[5] G. Marsaglia and L. Tsay, “Matrices and the structure of random
number sequences,” Linear Algebra Application, vol. 67, pp. 147–156,
1985.

[6] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gener-
ator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30,
1998.

[7] S. Wolfram, “Random sequence generation by cellular automata,”
Advances in Applied Mathematics, vol. 7, pp. 123–169, June 1986.

[8] P. D. Hortensius, H. C. Card, R. D. McLeod, and W. Pries, “Im-
portance sampling for ising computers using one-dimensional cellular
automata,” IEEE Trans. Comput., vol. 38, no. 6, pp. 769–774, 1989.

[9] P. D. Hortensius, R. D. McLeod, and H. C. Card, “Parallel random
number generation for vlsi systems using cellular automata,” IEEE

Trans. Comput., vol. 38, no. 10, pp. 1466–1473, 1989.
[10] K. Entacher, A. Uhl, and S. Wegenkittl, “Linear and inversive pseudo-

random numbers for parallel and distributed simulation,” pads, vol. 00,
p. 90, 1998.

[11] P. Coddington, “Random number generators for parallel computers,”
1997.

[12] S. Wolfram, “Statistical mechanics of cellular automata,” Reviews of

Modern Physics, vol. 55, pp. 601–644, 1983.
[13] G. Marsaglia, “DIEHARD battery of tests,” web page,

http://stat.fsu.edu/pub/diehard/.
[14] H. W. Jensen, “Global Illumination Using Photon Maps,” in Rendering

Techniques ’96 (Proceedings of the Seventh Eurographics Workshop

on Rendering). New York: Springer-Verlag/Wien, 1996, pp. 21–30.

APPENDIX

Cg shaders of CA-based PRNG:

float4 caprng(in half2 coords: TEX0,

in const uniform samplerRECT cells): COLOR0

{
float2 neighborPos;

float4 newState;

float4 neigborStates[4];

int i;

for (i = 0 ; i < 4; i++)

{
neighborPos.x = fmod(coords.x -

connectivity(i),CA SIZE);

neighborPos.y = coords.y;

neigborStates[i] = round(

texRECT(cells,neighborPos));

} // cell equation evaluation

newState.x = celleqn(neigborStates);

return newState;

}

Notice “connectivity” and “celleqn” are functions that is
specific for particular CA-based PRNG. Function packrecollect all
the cell states and form a floating point random number.

float4 pack(in half2 index : TEX0,

in const uniform samplerRECT cells): COLOR0

{
int i;

float4 outbits;

float4 states;

float2 texindex;

outbits = 0;

// packing all 32 bits

for (i = 0 ; i < 32 ; i++)

{
texindex.x = i*2+1;

texindex.y = index.y;

states = texRECT(cells, texindex);

outbits += states;

outbits /= 2;

}
return outbits;

}

Function getBit is used to support parallel PRNG within texel.

float4 getBit(float4 number, int bit)

{
float4 div;

// right shift by "bit" bits

div = (number / exp2(float(bit))) +0.0000001;

// get the last bit

return round(fmod(floor(div), 2.0));

}

The above code has been tested on different GPUs and it works
properly in all tests. The purpose of introducing round, floor and
+0.0000001 is to make the computation more stable.

846 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

(a) Generation 1 (b) Generation 2 (c) Generation 4

PSNR=20.43dB, e=0.2673, ϕ = 0.00 PSNR=23.30dB, e=0.5944 , ϕ = 0.00 PSNR=26.00dB, e=0.5852, ϕ = 0.00

(d) Generation 8 (e) Generation 11 (f) Control image

PSNR=28.64dB, e=0.9464, ϕ = 0.143 PSNR=29.99dB, e=0.9514, ϕ = 0.3513 generated with 10,000 photons

Fig. 6. Photon-mapping results with area light source at the ceiling and 16,000 photons using best CA-based PRNG from different generations.

(a) Generation 1 (b) Generation 2 (c) Generation 4

PSNR=26.00dB, e=0.2673, ϕ = 0.00 PSNR=26.50dB, e=0.5944 , ϕ = 0.00 PSNR=26.95dB, e=0.5852, ϕ = 0.00

(d) Generation 8 (e) Generation 11 (f) Control image

PSNR=28.06dB, e=0.9464, ϕ = 0.143 PSNR=29.17dB, e=0.9514, ϕ = 0.3513 generated with 500,000 photons

Fig. 7. Another photon-mapping result with point light source on the right and 200,000 photons using best CA-based PRNG from different generations.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 847

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

