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1. INTRODUCTION
There are several studies on solving the quadratic assign-

ment problem (QAP) withGPUs using an evolutionary com-
putation. In our previous studies [3], we applied GPU com-
putation to solve quadratic assignment problems (QAPs)
using a distributed parallel GA model on GPUs. However,
in those studies no local searches were applied. In this QAP
solver, we implemented a parallel ACO for QAPs on a GPU
by combining tabu search (TS) with ACO in CUDA [4].

2. SINGLE INSTRUCTION, MULTIPLE
THREADS (SIMT)

To obtain high performance with CUDA, here we need
to know how each thread runs in parallel. The approach is
called single instruction, multiple threads (SIMT). In SIMT
each MP executes threads in groups of 32 parallel threads
called warps.
A warp executes one common instruction at a time, so full

e�ciency is realized when all 32 threads of a warp agree on
their execution path. However, if threads of a warp diverge
via a data-dependent conditional branch, the warp serially
executes each branch path taken, disabling threads that are
not on that path, and when all paths complete, the threads
converge back to the same execution path.
In our implementation to be described in Section 5, we

designed the kernel function so that the threads that belong
to the same warp will have as few branches as possible.

3. QUADRATIC ASSIGNMENT PROBLEM
(QAP)

The QAP is the problem which assigns a set of facilities
to a set of locations and can be stated as a problem to �nd
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a permutation ϕ which minimizes

cost(ϕ) =
n∑

i=1

n∑
j=1

aijbϕ(i)ϕ(j), (1)

where A = (aij) and B = (bij) are two n×n matrices and ϕ
is a permutation of {1, 2, . . . , n}. Matrix A is a �ow matrix
between facilities i and j, and B is the distance between
locations i and j. The QAP is considered one of the hardest
problem class in combinatorial optimization problems.

4. MOVE AND COMPUTATION OF MOVE
COST IN QAP

Taboo Search (TS) seeks one with the best evaluation
among all the neighboring solutions. If there are no improv-
ing moves, TS chooses one that least degrades the objective
function. Thus, we need to calculate costs of all neiboring
solutions e�ciently. Let N(ϕ) be the set of neighbors of the
current solution ϕ. Then a neighbor, ϕ′ ∈ N(ϕ), is obtained
by exchanging a pair of elements (i, j) of ϕ. Then, we need
to compute move costs ∆(ϕ, i, j) = cost(ϕ′)− cost(ϕ) for all
the neighbouring solutions. The neighborhood size of N(ϕ)
(|N(ϕ)|) is n(n− 1)/2 where n is the problem size.
When we exchange r and s elements of ϕ (i.e., ϕ(r), ϕ(s)),

the change of cost(ϕ), ∆(ϕ, r, s), can be computed in com-
puting cost O(n).
Let ϕ′ be obtained from ϕ by exchanging r and s ele-

ments of ϕ, then fast computation of ∆(ϕ′, u, v) is obtained
in computing cost O(1) if u and v satisfy the condition
{u, v} ∩ {r, s} = ∅.
To use this fast update, additional memorization of the

∆(ϕ, i, j) values for all pairs (i, j) in a table are required.

5. IMPLEMENTATION OF ACO WITH TS
ON A GPU

We coded the process of each step of ACO as a kernel
function of CUDA. The overall con�guration of ACO with
TS for solving QAPs on a GPU with CUDA is shown in
Figure 1.Kernel functions are called from the CPU for each ACO
iteration. In these iterations of the algorithm, only the best-
so-far solution is transferred to CPU from GPU. It is used
for checking whether termination conditions are satis�ed.



Figure 1: Con�guration of ACO with TS on a GPU

Thus, in this implementation, overhead time used for data
transfer between CPU and GPU can be ignored. In the end
of a run, whole solutions are transferred from GPU to CPU.

6. MOVE-COST ADJUSTED THREAD AS-
SIGNMENT (MATA)

In general, for problem size n, the number of moves having
move cost inO(1) is (n−2)(n−3)/2 and the number of moves
having move cost in O(n) is 2n − 3. Table 1 shows these
values for various problem sizes n. For larger size problems,
ratios of |N(ϕ)| in O(n) to |N(ϕ)| have smaller values than
those in smaller sized problems.

Table 1: Neighborhood sizes for various problem sizes
Neighborhood

size |N (n )|
|N(n)| in O (1) |N(n)| in O (n )

n (n -1)/2 (n -2)(n -3)/2 2n -3

40 780 703 77 0.099

80 3160 3003 157 0.050

120 7140 6903 237 0.033

160 12720 12403 317 0.025

200 19900 19503 397 0.020

Problem size

n

|N(n)|  in O (n )

|N (n )|

In this research, we assign move cost computations of a
solution ϕ which are in O(1) and in O(n) to threads which
belong to di�erent warps in a block. Figure 2 shows the
thread structure in a block in computing move costs for TS
in this study. Hereafter, we refer to this thread structure
as Move-Cost Adjusted Thread Assignment, or MATA for
short.
Since the computation of a move cost which is O(1) is

smaller than the computation which is O(n), we assign mul-
tiple number NS of computations which are O(1) to a single
thread in the block. Also, it is necessary to assign multi-
ple calculations of the move costs to a thread, because the
maximum number of threads in a block is limited (1024 for
GTX 480).

7. CONCLUDING REMARKS
In this study, we used a PC which has one Intel Core i7 965

(3.2 GHz) processor and a single NVIDIA GeForce GTX480
GPU. The instances on which we tested our algorithm were

Figure 2: The thread structure in a block in computing move
costs for TS (MATA)

taken from the QAPLIB benchmark library [1]. QAP in-
stances in the QAPLIB can be classi�ed into 4 classes; (i)
randomly generated instances, (ii) grid-based distance ma-
trix, (iii) real-life instances, and (iv) real-life like instances [2].
In this experiment, we used the following 10 instances which
were classi�ed as either (i) ; tai40a, tai50a, tai60a, tai80a,
tai100a, or (iv) tai50b, tai60b, tai80b, tai100b, and tai150b
(the numbers indicate the problem size n). Here, note that
instances classi�ed into class (i) are much harder to solve
than those in class (iv).
GPU computation with MATA showed a promising speedup

compared to GPU computation without MATA (non-MATA)
and computation with CPU. Please refer to [4] for more de-
tail.
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