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I. INTRODUCTION

At the European Space Agency a software framework was 
developed  over  the  last  few  years  focusing  on  global 
optimization.  The framework,  mainly developed in-house at 
the  Advanced  Concepts  Team  (ACT),  was  released  as  an 
open-source  project  last  year,  that  allows  to  run  high  
dimensional global optimization problems, like interplanetary 
trajectory  planning  and  optimizing  controllers  for  space 
robotics.  PaGMO  is  implemented  in  an  object-oriented 
fashion as a C++ library but also has a Python wrapper for 
easy interactive sessions [1].

The  core  library  includes  support  for  multi-core  systems 
(mainly  through  multi-threading)  and  recently  has  been 
trying  to  add  functionality  towards  cluster  and  networked 
computers  by aiming  for  an  MPI  integration.  The  project 
described in  this  paper  was published as a  possible Google 
Summer of Code project on the PaGMO sourceforge page but 
was dropped because of limited funding.  Over the last  year 
the aim was set to implement capabilities to run the PaGMO 
optimization heuristics on GPU architectures. 

As  a  starting  point  the  evolving  docking  problem  was 
chosen,  which  aims  to  design  a  neuro-controller  for  the 
automatic  rendezvous  and  docking  task  in  spacecraft 
operations. A genetic algorithm is used to search for a neural  
network that controls the spacecraft [2].

The  docking  process involves a  series  of maneuvers  and 
controlled  thruster  burns,  which  lead  to  the  chaser  vehicle 
eventually being able to come close and finally attach to the,  
in  our  case  passive,  target  spacecraft.  It  can  be seen  as  a 
variant of the phototaxis task in robotics, but using a different  
physical  environment  (no friction,  non-zero external  forces, 
thruster-based motion). The spacecraft is modeled as a circle 
with thrusters at the edge of its size (radius),  which control 
forward/backward and rotational acceleration. 

II. DESIGN

Pagmo's  design  incorporates  an  island  based  Genetic 
Algorithm  [3]  framework  for  solving  multiple  objective 
optimization problems. 

The structure of a PaGMO program includes a description 
of  the  problem  to  solve,  an  algorithm  type  and  an 
archipelago.  The  problem  description  details  how  the 
genotype  of  an  individual  defines  the  fitness  value  of  the 
individual.  The  algorithm  defines  how  individuals  in  an 
island evolve and mutate while the archipelago describes the 
multi-island  configuration  of  the  genetic  algorithm  with 
migration etc. 

The requirement of integrating GPGPU into PaGMO stems 
from the fact that some problem take an exuberant amount of 
time to solve. This is down to the number of evaluations and 
the  complexity  of  the  problem's  fitness  functions.  These 

functions are ideal candidates for the SIMD type structure for 
GPGPU feasible algorithms. The challenge of the integration 
is in being able to simulate the genetic algorithm on the GPU 
while taking in consideration the different levels that exist in  
the multi-island genetic algorithm. Each PaGMO problem is 
originally  solved  by  an  archipelago  of  islands,  each 
containing a number of individuals. We added two additional  
levels for points and task size. 

Since the fitness function of each problem usually involves 
execution of some other sub-tasks (such as the simulation of 
neural networks which we are training),  each individual can 
have a  number  of tasks  within  it.  These are  called  points.  
Since each point itself can be computed in parallel (such as a 
feed-forward neural  network where each neuron depends on 
its inputs independently), each point is assigned a task size. 

The implementation breaks down the implementation into 
several classes. 

A. cuda info

Provides  details  of  the  capabilities  of  the  GPU device  for 
instance dimensional limits and shared memory amount. 

B. Kernel dimensions

Since the performance of the GPU code depends heavily on 
the choice of kernel dimensions it makes sense to have a set 
of  classes  to  control  this  parameter.  This  depends  on  the 
amount of shared memory as well as the device's capabilities. 
These  classes  provide  a  means  for  specifying  the  kernel 
launch  dimensions  on  which  it  enforces  constraints  to 
calculate the preferred dimensions. 

C. dataset

This class encapsulates access to the GPU device memory. It  
provides  memory accessors  that  have  specifiers  for  island, 
individual  and  point  id.  The  data  is  organized  so  that  
contagious threads access contagious data meaning that data 
for the same thread is organized along the y dimension.

D. task

The  implementation  revolves  around  the  task  class  which 
describes the fundamental job that the GPU will be tasked to 

1The main contribution during this work was done while at the European Space Agency's Advanced Concepts Team.

Fig.  1: This diagram shows the thread layout of an island containing 4 
individuals, each with 2 points with task size of 4.  



complete.  It  can be used to launch  more than  one kernel  if 
required. It  also enables preconditions and postconditions as 
functors. To create a task, one must derive from this class and 
specify an implementation for the launch method. The launch 
method calls one or more CUDA kernels and passes device 
memory pointers to the actual CUDA kernel. 

E. cuda problem

We aim  to  compute  the  fitness  of the  entire  archipelago's 
islands  and  individuals  in  one  go.  We  achieve  this  by 
defining a CUDA problem base class, which can be derived 
by  implementing  a  method  which  computes  the  entire 
archipelago's fitnesses at the same time.

III. DOCKING PROBLEM

The problem of training  neuro-controllers for the docking 
problem was broken down into three parts along similar lines 
to the original legacy implementation. 

A. Neural network toolkit

A  simplistic  neural  network  toolkit  was  implemented  that 
would be simulated on the GPU. The weights of the neural  
network are extracted from the individual's genome while the 
number of input sets form the number of points for the task.  
Two  neural  network  types  were  implemented;  simple  and 
multilayer perceptrons. 

B. Integrator class

Similar to the neural network toolkit, a set of integrators were 
implemented that took an equation as a device function type 
as  a  parameter  and  evaluated  the  ODE  integral  for  that  
equation  with  additional  parameters.  The  Runge-Kutta  and 
Euler methods were implemented. In the case of the docking 
problem,  the  parameter  function  was an  implementation  of 
the Hill-Clohessey-Wiltshire (HCW) equations. 

C. Fitness functions

To evaluate the fitness of the neural  network being used by 
the  docking  problem,  a  set  of  fitness  functions  were 
implemented which would compare the output of the neural  
network with a reference value. 

D. Docking problem

The docking problem used a multilayer perceptron that had 7 
inputs, 11 neurons at the hidden layer and 2 output neurons.  
This  results  in  a  chromosome size of 112 real  values.  The 

most  significant  part  of  the  docking  problem's 
implementation  is  its  objfun  function   which  starts  off by 
loading up the neural network's weights and inputs. Since the 
integrator's inputs are common to that of the neural network,  
we just  use pointers  of those  parameter.  After  loading  the 
data, we launch the tasks in sequence for the duration of the 
specified docking time and then compute and set the fitness 
values back to the  individuals.  We also compute the fittest 
individual at this point. 

IV. PERFORMANCE AND RESULTS

To evaluate  the  performance  of this  implementation,  we 
compared it with the previous implementation with different 
configurations. Figures 2 and 3 show the time consumed for 
the  legacy  system  in  comparison  to  the  GPU  enabled 
implementation.  For  the  tests  the  following  hardware  was 
used: a 1.6 Ghz dual core processor, 2 GB RAM and a 256 
MB Nvidia ION GPU, which is fairly a low-end GPU but it 
serves  our  purpose  of  drawing  a  comparison  between  the 
implementations. 

V. CONCLUSION

The  aim  of  this  project  was  to  implement  a  scalable 
framework  for using  CUDA to perform processor  intensive 
tasks while adhering  to the design specification of PaGMO. 
This project succeeded in doing this and produced significant  
speed-ups for the docking problem implementation, especially 
for larger  configurations.  This  improvement  can  be further  
improved by the use of better hardware. 
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Fig.  2:  This  chart  shows  how  the  time  consumed  by  the  legacy 
implementation (blue) relates  to the amount consumed by the CUDA 
implementation (orange) for varying number of positions. 
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Fig.  3:  This  chart  shows  how  the  time  consumed  by  the  legacy 
implementation (blue) relates  to the amount consumed by the CUDA 
implementation (orange) for varying number of individuals.
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