
CUDA Massively Parallel Trajectory Evolution
M. Kashif Kaleem (King's College London), Jürgen Leitner1 (IDSIA, University of Lugano)

I. INTRODUCTION

At the European Space Agency a software framework was
developed over the last few years focusing on global
optimization. The framework, mainly developed in-house at
the Advanced Concepts Team (ACT), was released as an
open-source project last year, that allows to run high
dimensional global optimization problems, like interplanetary
trajectory planning and optimizing controllers for space
robotics. PaGMO is implemented in an object-oriented
fashion as a C++ library but also has a Python wrapper for
easy interactive sessions [1].

The core library includes support for multi-core systems
(mainly through multi-threading) and recently has been
trying to add functionality towards cluster and networked
computers by aiming for an MPI integration. The project
described in this paper was published as a possible Google
Summer of Code project on the PaGMO sourceforge page but
was dropped because of limited funding. Over the last year
the aim was set to implement capabilities to run the PaGMO
optimization heuristics on GPU architectures.

As a starting point the evolving docking problem was
chosen, which aims to design a neuro-controller for the
automatic rendezvous and docking task in spacecraft
operations. A genetic algorithm is used to search for a neural
network that controls the spacecraft [2].

The docking process involves a series of maneuvers and
controlled thruster burns, which lead to the chaser vehicle
eventually being able to come close and finally attach to the,
in our case passive, target spacecraft. It can be seen as a
variant of the phototaxis task in robotics, but using a different
physical environment (no friction, non-zero external forces,
thruster-based motion). The spacecraft is modeled as a circle
with thrusters at the edge of its size (radius), which control
forward/backward and rotational acceleration.

II. DESIGN

Pagmo's design incorporates an island based Genetic
Algorithm [3] framework for solving multiple objective
optimization problems.

The structure of a PaGMO program includes a description
of the problem to solve, an algorithm type and an
archipelago. The problem description details how the
genotype of an individual defines the fitness value of the
individual. The algorithm defines how individuals in an
island evolve and mutate while the archipelago describes the
multi-island configuration of the genetic algorithm with
migration etc.

The requirement of integrating GPGPU into PaGMO stems
from the fact that some problem take an exuberant amount of
time to solve. This is down to the number of evaluations and
the complexity of the problem's fitness functions. These

functions are ideal candidates for the SIMD type structure for
GPGPU feasible algorithms. The challenge of the integration
is in being able to simulate the genetic algorithm on the GPU
while taking in consideration the different levels that exist in
the multi-island genetic algorithm. Each PaGMO problem is
originally solved by an archipelago of islands, each
containing a number of individuals. We added two additional
levels for points and task size.

Since the fitness function of each problem usually involves
execution of some other sub-tasks (such as the simulation of
neural networks which we are training), each individual can
have a number of tasks within it. These are called points.
Since each point itself can be computed in parallel (such as a
feed-forward neural network where each neuron depends on
its inputs independently), each point is assigned a task size.

The implementation breaks down the implementation into
several classes.

A. cuda info

Provides details of the capabilities of the GPU device for
instance dimensional limits and shared memory amount.

B. Kernel dimensions

Since the performance of the GPU code depends heavily on
the choice of kernel dimensions it makes sense to have a set
of classes to control this parameter. This depends on the
amount of shared memory as well as the device's capabilities.
These classes provide a means for specifying the kernel
launch dimensions on which it enforces constraints to
calculate the preferred dimensions.

C. dataset

This class encapsulates access to the GPU device memory. It
provides memory accessors that have specifiers for island,
individual and point id. The data is organized so that
contagious threads access contagious data meaning that data
for the same thread is organized along the y dimension.

D. task

The implementation revolves around the task class which
describes the fundamental job that the GPU will be tasked to

1The main contribution during this work was done while at the European Space Agency's Advanced Concepts Team.

Fig. 1: This diagram shows the thread layout of an island containing 4
individuals, each with 2 points with task size of 4.

complete. It can be used to launch more than one kernel if
required. It also enables preconditions and postconditions as
functors. To create a task, one must derive from this class and
specify an implementation for the launch method. The launch
method calls one or more CUDA kernels and passes device
memory pointers to the actual CUDA kernel.

E. cuda problem

We aim to compute the fitness of the entire archipelago's
islands and individuals in one go. We achieve this by
defining a CUDA problem base class, which can be derived
by implementing a method which computes the entire
archipelago's fitnesses at the same time.

III. DOCKING PROBLEM

The problem of training neuro-controllers for the docking
problem was broken down into three parts along similar lines
to the original legacy implementation.

A. Neural network toolkit

A simplistic neural network toolkit was implemented that
would be simulated on the GPU. The weights of the neural
network are extracted from the individual's genome while the
number of input sets form the number of points for the task.
Two neural network types were implemented; simple and
multilayer perceptrons.

B. Integrator class

Similar to the neural network toolkit, a set of integrators were
implemented that took an equation as a device function type
as a parameter and evaluated the ODE integral for that
equation with additional parameters. The Runge-Kutta and
Euler methods were implemented. In the case of the docking
problem, the parameter function was an implementation of
the Hill-Clohessey-Wiltshire (HCW) equations.

C. Fitness functions

To evaluate the fitness of the neural network being used by
the docking problem, a set of fitness functions were
implemented which would compare the output of the neural
network with a reference value.

D. Docking problem

The docking problem used a multilayer perceptron that had 7
inputs, 11 neurons at the hidden layer and 2 output neurons.
This results in a chromosome size of 112 real values. The

most significant part of the docking problem's
implementation is its objfun function which starts off by
loading up the neural network's weights and inputs. Since the
integrator's inputs are common to that of the neural network,
we just use pointers of those parameter. After loading the
data, we launch the tasks in sequence for the duration of the
specified docking time and then compute and set the fitness
values back to the individuals. We also compute the fittest
individual at this point.

IV. PERFORMANCE AND RESULTS

To evaluate the performance of this implementation, we
compared it with the previous implementation with different
configurations. Figures 2 and 3 show the time consumed for
the legacy system in comparison to the GPU enabled
implementation. For the tests the following hardware was
used: a 1.6 Ghz dual core processor, 2 GB RAM and a 256
MB Nvidia ION GPU, which is fairly a low-end GPU but it
serves our purpose of drawing a comparison between the
implementations.

V. CONCLUSION

The aim of this project was to implement a scalable
framework for using CUDA to perform processor intensive
tasks while adhering to the design specification of PaGMO.
This project succeeded in doing this and produced significant
speed-ups for the docking problem implementation, especially
for larger configurations. This improvement can be further
improved by the use of better hardware.

ACKNOWLEDGMENT

We would like to thank Dr Francesco Biscani at the Advanced
Concepts Team of the European Space Agency for the advice and
support he provided during this project.

REFERENCES

[1] Biscani, F., Izzo, D., & Yam, C. H. (2010). A Global Optimisation
Toolbox for Massively Parallel Engineering Optimisation. 4th
International Conference on Astrodynamics Tools and Techniques .

[2] Jürgen Leitner, Christos Ampatzis, Dario Izzo. (2010). Evolving ANNs for
Spacecraft Rendezvous and Docking. 10th International Symposium on
Artificial Intelligence, Robotics and Automation in Space.

[3] Ampatzis, C., Izzo, D., Rucinski, M., and Biscani, F., (2009). ALife in the
Galapagos: migration effects on neuro-controller design. The European
Conference on Artificial Life.

Fig. 2: This chart shows how the time consumed by the legacy
implementation (blue) relates to the amount consumed by the CUDA
implementation (orange) for varying number of positions.

1 3 5 7 9
0

10

20

30

40

positions

tim
e

 (
se

co
n

d
s)

Fig. 3: This chart shows how the time consumed by the legacy
implementation (blue) relates to the amount consumed by the CUDA
implementation (orange) for varying number of individuals.

5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

individuals

ti
m

e
 (

s
e

c
o

n
d

s
)

	I. INTRODUCTION
	II. Design
	A. cuda info
	B. Kernel dimensions
	C. dataset
	D. task
	E. cuda problem

	III. Docking problem
	A. Neural network toolkit
	B. Integrator class
	C. Fitness functions
	D. Docking problem

	IV. Performance and results
	V. Conclusion

