
Fully Parallel Differential Evolution

Introduction
 A fully parallel Differential Evolution (DE)
algorithm based on a Graphic Processing Unit
(GPU) approach is presented. The Compute
Unified Device Architecture (CUDA) programming
platform allows exploiting the inherent parallelism
and reducing the computational effort associated to
evolutionary operations. The difficulties of
generation of random numbers in a multithreaded
scheme have been overcome making use of the
CURAND library. Mutation, selection and even
creation of initial population have been
parallelized, remaining only the task associated to
the determination of the best solution as a
sequential task.

Differential Evolution on the GPU
 A DE algorithm based in a greedy scheme is
implemented in this work and tested on a set of
well-known benchmark optimization problems. A
novel mutant vector definition is proposed and the
crossover operation is implemented but not used.

Mutation scheme
 The mutation operation is carried out using a
novel proposal that reduces the number of control
variables, avoiding the necessity of tuning
procedures or running exhaustive tests in order to
achieve accurate results. A certain level of
greediness is added by including useful information
about the best global solution.

 According to this, for each vector in the
population at geneartion g, denoted by xi(g), a
mutant vector vi(g) is produced by calculating its
components as,

where i represents the index of the base vector and
the current mutant in the base and test populations
of sizes Np, respectively. λj ∈ (0, 1] is a random
number uniformly generated and is used instead of
the constant mutation F to weight the difference
between the j-th components of two randomly
chosen population members r1, r2 ∈ [1,Np] which
are different from each other. Besides, the factor
(1 − λ) is used to weight the difference between the
j-th components of the base vector xi and the best

global solution xbest(g), which provides a mean to
enhance the greediness of the scheme by
incorporating information about the best global
solution at generation g.

Selection scheme
 The selection operation is carried out without
considering a previous recombination stage. The i-
th mutant vi(g) is selected to be part of the next
generation only if its fitness f(vi(g)) is better than the
i-th member of the population at the current
generation xi(g). This is,

 By using the proposed scheme, evolutionary
parameters are reduced since the mutation constant
F was replaced by random numbers and the
crossover constant Cr is eliminated.

Parallel processing scheme
 Each one of the vectors in population is created,
mutated, evaluated and selected independently
inside a computing CUDA kernel. In order to
accelerate the data reading during the evolutionary
operations, populations are stored in texture
memory spaces. Results are stored in global
memory spaces.
 CUDA threads are arranged in one or two-
dimensional blocks. Once the blocks size is
defined, is necessary to arrange them inside an
unidimensional grid which length is calculated as,

where Np represents the population size.

Building and execution notes
 The sequential and GPU-based source code
were compiled and tested in a computing platform
consisting of a CPU AMD Phenom II, 3.0 GHz
quad-core with 3.9 GB. The GPU used in this work
is an NVIDIA Tesla C2050 (“Fermi” architecture)
graphic card with 2688 MB of memory, CUDA 3.2
driver, runtime version 3.20 and compute capability
2.0.

COMPTETITION: GPUS FOR GENETIC AND EVOLUTIONARY COMPUTATION	
 GECCO-211

PAGE 1 FROM 2	
 	
 JUNE 23, 2011

Sergio Jhovanne Domínguez González
U.M.S.N.H.

sdominguez@faraday.fie.umich.mx

Norberto García Barriga
U.M.S.N.H

gbarriga@umich.mx

v(g)i,j = x(g)
i,j + λj · (x(g)

r1,j − x(g)
r2,j) + (1− λj) · (x(g)

best,j − x(g)
i,j)

x(g+1)
i =

�
v(g)
i if f(v(g)

i) > f(x(g)
i)

x(g)
i otherwise

Grid Size =

�
Np

Block Size

�

mailto:sdominguez@faraday.fie.umich.mx
mailto:sdominguez@faraday.fie.umich.mx
mailto:gbarriga@umich.mx
mailto:gbarriga@umich.mx

Execution parameters
 Most of the execution parameters can be
defined in the file src/de_common.h. From this
file, it is possible to define the following
parameters:

Parameter Description

N_p Represents the population size Np.

D Represents de number of
dimensions D in the optimization

problem.

G Represents gmax, the maxium
number of generations the

aplications is allowed to run.

BLOCK_SIZE For the GPU-based application, it
represents the size of the blocks of

CUDA threads.

BLOCK_SIZE_X For the GPU-based application, it
represents the size of the blocks of

CUDA threads in x dimension.

BLOCK_SIZE_Y For the GPU-based application, it
represents the size of the blocks of

CUDA threads in y dimension.

 In addition to this parameters, it is necessary to
set the search space limits or the domain search.
The search space limits are set through a two-
dimensional array of order 2xD , cal led
Restrictions for the sequential version and
d_Restrictions for de GPU-based version.
This variables are located in the files src/
DE.cpp and src/kernels.cu, respectively.
The values set in the first column correspond to the
lower limits of each of the D dimensions, while the
values of the second column correspond to the
upper limits.

Additional information
 This application is part of the master thesis of
Sergio Jhovanne Domínguez González, which was
carried out thanks to the support and supervision of
Norberto García barriga, Research Professor at
División de Estudios de Postgrado, Facultad de
Ingeniería Eléctrica, Universidad Michoacana de
San Nicolás de Hidalgo, Morelia, Michoacán,
México. For more information, please contact us:
s d o m i n g u e z @ f a r a d a y. f i e . u m i c h . m x a n d
gbarriga@umich.mx.

Test functions
 Four well-known test functions are included in the source code which are useful to assess the application
performance. These four functions and its test parameters are described in Table 1.

Table 1: Functions and parameters used to test the application’s performance.

Function Np gmax Domain Search

Rosenbrock’s function 2048, 4096, 8192 18,000 [-600,600]D

Griewank’s function 2048, 4096, 8192 1,000 [-600,600]D

Ackley’s function 2048, 4096, 8192, 16384, 32768, 65535 3,000 [-32,32]D

* F4 function 2048, 4096, 8192 2,000 [-600,600]D

 * F4 function corresponds to:

 where,

COMPTETITION: GPUS FOR GENETIC AND EVOLUTIONARY COMPUTATION	
 GECCO-211

PAGE 2 FROM 2	
 	
 JUNE 23, 2011

f(x) = 0.1

sin2(3πx1) +
D−1�

j=1

(xi − 12)
�
1 + 10 sin2(3πxi+1)

�
+ (xD − 1)2

�
1 + sin2(2πxD)

�

+
D�

j=1

u(xi, 5, 100, 4)

u(x, a, k,m) =

k · (x− a)m, x > a

0, − a ≤ x ≤ a

k · (−x− a)m, x < −a

mailto:sdominguez@faraday.fie.umich.mx
mailto:sdominguez@faraday.fie.umich.mx
mailto:gbarriga@umich.mx
mailto:gbarriga@umich.mx

