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1. GPU-BASED PSO PARALLELIZATION
In ‘synchronous’ PSO, positions and velocities of all par-

ticles are updated in turn in each ‘generation’, after which
each particle’s new fitness is evaluated. The value of the so-
cial attractor is only updated at the end of each generation,
when the fitness values of all particles are known.
The ‘asynchronous’ version of PSO, instead, allows the so-

cial attractors to be updated immediately after evaluating
each particle’s fitness, which causes the swarm to move more
promptly towards newly-found optima. In asynchronous
PSO, the velocity and position update equations can be ap-
plied to any particle at any time, in no specific order.
The most common GPU implementations of PSO assign

one thread per particle and do not take full advantage of
the GPU power in evaluating the fitness function in parallel.
Parallelization only occurs on the number of particles of a
swarm and ignores the dimensions of the function.
In our parallel implementations: (i) we designed the thread

parallelization to be as fine-grained as possible, consider-
ing that, in PSO, velocity and position update occur in-
dependently over each dimension; (ii) we implemented an
’asynchronous’ PSO which, despite updating all particles in
parallel, allows each of them to update the social attractor
without waiting for all other particles’ fitness values to be
evaluated. A block diagram representing the GPU execution
of our parallel asynchronous PSO is shown in Figure 1.

1.1 Synchronous CUDA-PSO
The synchronous implementation [4] we previously devel-

oped using CUDA comprises three stages (kernels), namely:
positions update, fitness evaluation, and bests update, im-
plemented as three CUDA kernels which must be executed
sequentially; synchronization occurs at the end of each ker-
nel run. While allowing for virtually any swarm size, this im-
plementation requires synchronization points where all the
particles’ data has to be saved into slow global memory to be
read by the next kernel. This frequent access to global mem-
ory has been the main justification behind the asynchronous
implementation.

1.2 Asynchronous CUDA-PSO
Like the synchronous version, the asynchronous PSO allo-

cates a thread block per particle with a thread per problem
dimension, but it is implemented as just one kernel. Remov-
ing the synchronization constraint allows each particle to
keep all its data in fast-access registers and shared memory,
and removes the need to share data in global memory within
a generation. In practice, every particle checks its neighbors’
personal best fitnesses, then updates its own personal best
in global memory only if it is better than the previously

Figure 1: Asynchronous CUDA-PSO: particles run
in parallel independently. Blocks represent particles
and thick white arrows represent threads for each
dimension of the search space.

found personal best fitness. This speeds up execution time
dramatically, particularly when the fitness function itself is
highly parallelizable. The price to be paid is a limitation
in the number of particles in a swarm which must match
the maximum number of thread blocks that a certain GPU
can execute in parallel. Using different mid-priced graphics
cards we could run swarms of up to 27 or 32 particles.

A fully-detailed description of our asynchronous parallel
PSO implementation is given in [5].

1.3 OpenCL-PSO
The OpenCL version is substantially identical to the CUDA-

based asynchronous implementation. An effective random
number generator1 is embedded in the code, since OpenCL
does not provide any. The same algorithm was also used
in the CUDA versions since it is simpler and faster than
the one provided by CUDA. Comparison of results obtained
with the different random functions showed that the limited
length of the sequence generated by the one we used (263)
does not affect performances significantly.

2. RESULTS
We compared the different versions of our parallel PSO

implementation and the sequential SPSO on a ‘classical’

1http://www.doc.ic.ac.uk/~dt10/research/
rngs-gpu-mwc64x.html
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Figure 2: Comparison of sequential and asynchronous GPU-based PSO: final fitness values (left) and speed-up
(right) vs. problem dimensions on the Rastrigin function running 32 particles for 10000 generations.

benchmark which comprised a set of functions which are
often used to evaluate stochastic optimization algorithms.
The different parallel PSO implementations were evaluated
in terms of speed, while also checking that the quality of
results had not been affected. All algorithm parameters
were the same in all tests, set to the ‘standard’ values sug-
gested in [2]: w = 0.729844 and C1 = C2 = 1.49618. Also,
we adapted the sequential SPSO by substituting its orig-
inal stochastic-star topology with the same ring topology
adopted in the parallel versions and downgraded it to ‘float’
precision to match the GPU-based algorithms’ precision.
Our parallel algorithms were developed using CUDA ver-

sion 3.2 [6] and OpenCL 1.0 [3].
The following implementations of PSO have been com-

pared: (1) the sequential SPSO version modified as de-
scribed above; (2) CUDA-PSO implemented asynchronously
with only 1 kernel; (3) CUDA-OpenCL following the same
implementation as CUDA-PSO. Values were averaged over
100 runs for all values of problem dimension D between 2
and 128 running swarms of 32 particles for 10000 iterations.
We used the following test functions which can be found

in the SPSO package [2] and in the Black Box Optimization
Benchmark suite [1]: (a) Sphere, evaluated within the do-
main [−100, 100]D, (b) High Conditioned Elliptic function
([−100, 100]D), (c) Rastrigin ([−5.12, 5.12]D), (d) Rosen-
brock ([−30, 30]D), and (e) Griewank ([−600, 600]D).
The asynchronous version of our algorithm was able to

significantly reduce execution time with respect not only to
the sequential version but also to our previously-developed
parallel versions. Depending on the degree of parallelization
allowed by the fitness functions we considered, the asyn-
chronous version of CUDA-PSO could reach speed-ups rang-
ing from 50 (Rosenbrock) to over 400 (Griewank, Rastrigin)
with respect to the sequential implementation, and often of
more than one order of magnitude with respect to the cor-
responding GPU-based 3-kernel synchronous version.
Figure 2 compares average final fitness values and speed-

ups obtained on the Rastrigin function: the GPU-based and
the sequential versions produced very similar average best
fitness values which shows that the speed-ups were not ob-
tained at the expense of accuracy.
Regarding speed-ups, the best performances were obtained

on the most complex functions. This is probably due to the

fact that GPUs have internal fast math functions which can
provide good computation speed at the cost of slightly lower
accuracy (the error caused is of the same order of the man-
tissa’s LSB), which causes no problems for most scientific
problems.

As well the limit in the swarm size is not such a relevant
shortcoming, as the number of particles needed by PSO for
most applications is much lower than the population size
usually required by evolutionary algorithms to solve high-
dimensional problems. This makes the availability of swarms
of virtually unlimited size less appealing than could appear
at first sight. One should also consider that GPUs are being
equipped with more processing cores with the introduction
of every new model.
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