Evolving Neural Networks on GPUs

Johannes Hofmann
Friedrich-Alexander-University Erlangen-Nuremberg
Email: johannes.b.hofmann@stud.informatik.uni-erlangen.de

I. INTRODUCTION

Financial Time Series prediction attempts to model the behavior of
financial markets using, among other things, tools like technical, inter-
market, and fundamental indicators. Accurate prediction, however, is
difficult for a number of reasons: financial markets are influenced,
often in a non-linear, sometimes time-lagged fashion, by factors
including interest and exchange rates, the rate of economic growth,
and a number of industrial commodities.

Neural Networks (NN) are a well-established method to attempt
to conquer these difficulties [1]. Using unsupervised learning like
backpropagation or the Levenberg-Marquardt algorithm NNs can
be trained to model a market using historic market data; complex
models, however, require the use of large NN, the training of which
requires large amounts of historic data — leading to long training
periods.

As the size of the network needs to be maintainable there can only
be a limited number of inputs, leaving the network designer with
the question what inputs to select from a large amount of technical
indicators. The network topology also has a great impact on network’s
modeling ability. There exist no exact methods for finding the “right”
inputs or the “right” network topology: practitioners have to use
heuristics until they arrive at a combination of inputs and topology
that satisfies their requirements.

Evolutionary Computing can provide a solution to this dilemma by
maintaining a population of NNs with different inputs and topologies.
However, as we’ve already mentioned, the time required to train a
single network can be substantial, so the notion of training a whole
population over a number of generations can render the algorithm
infeasible for ordinary processors in terms of execution time.

To overcome this problem we present an implementation which
uses the GPU to speed up the search. The algorithm implements
a new, NN-oriented, evolutionary search which is based on ideas
borrowed from Grammatical Evolution (GE) [2], as well as other
DNA-inspired concepts.

II. ALGORITHM

A number of partial' phenotypes are maintained in a population of
individuals using variable-length binary genomes. These phenotypes
are created in two stages: transcription maps successive pairs of eight
bits onto integer values which are used in a context-sensitive fashion
during translation to chose appropriate actions for constructing a NN
topology.

While transcription is the same as in GE we decided to customize
the translation operator: because NNs are not per se sentences of a
language, which can be described by a grammar, we use stop codons’
during the mapping process to decide whether to add inputs to a
neuron, create a new neuron, or create a new network layer.

'In our algorithm the genotype determines only NN inputs and NN
topology, network weights are not encoded in it.

2This design is based on the concept of stop codons used in the translation
phase during gene-expression in living cells.

Once the skeleton phenotype (NN input and structure) has been
created the missing weights to complement the NN are generated
during evaluation with the help of the backpropagation algorithm.

Backpropagation initializes the network’s weights with random
values, then performs gradient descent in batch to minimize the
network error, which is calculated using a validation data set to
prevent overfitting. Gradient descent can only find local minima, so
in an attempt to increase the odds of identifying the global minimum
backpropagation is performed R times. The best value of all iterations
is used as the neural network’s fitness, and the corresponding weights
are saved with the individual to enable later use of the network for
prediction on out-of-sample data.

The evolutionary search is performed using stock evolutionary
operators: tournament selection, ripple crossover and bit mutation for
variation, and a generational scheme featuring k-elitism as replace-
ment operator.

During evaluation we used the algorithm to evolve a network
which attempts to predict the next day’s closing value of the German
stock index (DAX). A number of technical indicators including
stock indexes like the Dow Jones Industrial Average, industrial
commodities such as oil and aluminum, and a number of moving
averages were used to train the network.

III. IMPLEMENTATION
A. CPU

Additional to the sequential algorithm we implemented a parallel
version for the CPU to allow for a fair comparison of both ar-
chitectures. This was done using OpenMP [3] to parallelize most
of the evolutionary operators (seeding, parent selection, crossover,
evaluation); the only components requiring manual tuning were
random number generation and the replacement operator using k-
elitism: because parallel performance of glibc’s drand48_r was
more than poor we decided to implement a parallel Mersenne twister
for random number generation; location of the £ fittest individuals
was performed using _gnu_parallel: :min_element from the
Standard Template Library’s parallel/algorithm suite.

Speedups for the parallel version are included in Table I.

B. GPU

The whole algorithm is run on the GPU, every generation the elite
is transfered to the CPU and stored, allowing the search to be stopped
at any time.

Random number generation is done with the CURAND library
and parallelization of all evolutionary operators is straightforward:
seeding, parent selection, crossover, and mutation can be considered
embarrassingly parallel tasks, which is why in these operators each
individual can be mapped onto a thread (two individuals per thread
in the case of crossover) and handled independently. Because these
operators’ design is simple there is low divergence, which is why
their parallelization scales very well. Elite location in the replacement
operator is implemented with the help of the Thrust library [4].

Parallelization of the fitness function should not be based on the
already mentioned “one thread per individual” scheme because the
number of iterations of the gradient descent algorithm varies greatly
with NN structure and seeding of weights. This leaves threads with a
low number of iterations stuck until the thread with the most iterations
has finished, thus causing divergent warps and thereby essentially
degrading parallelism to the multiprocessor level.

In batch learning, instead of applying the calculated weight adjust-
ments® directly after a training set has been presented to the network,
averaged weight deltas over all training sets are used to update the
neural network weights.

We can use this property to implement the parallelization of the
evaluation function on an individual-per-block level: each thread in
a block processes some of an individual’s training data to produce
accumulated weight deltas, which are then shared and summed up
(using best reduction practices [5]), and finally averaged to update
the weights of the network.

Calculation of the network error on the validation dataset is done
they same way: each thread handles some of the validation data and
sums up the individual errors in a local variable, then the local errors
are shared between threads and summed up to calculated the total
network error.

We use the constant and L1 cache, if available, to store training and
validation data, but we were able to achieve a substantial speedup on
GPUs with no caches as well, despite low occupancy caused by high
kernel register usage: memory latency can easily be hidden because
operations associated with neural networks are very expensive in
terms of floating-point computation, i.e. they take longer to calculate
than it takes the next input to arrive.

IV. RESULTS

We evaluated our implementation using an AMD Opteron 2435
hexacore and an Intel Xeon X5650 hexacore on the CPU side, and
an NVIDIA GeForce 480 GTX (Fermi; caches) as well as an NVIDIA
Tesla C1060 (pre-Fermi; no caches) on the GPU side. Speedup results
are shown in Table I and were calculated using the average time of
ten runs.

AMD (1) Intel (1) AMD (6) Intel (6)
Intel (1) 1.1
AMD (6) 5.1 4.7
Intel (6) 5.6 52 1.1
Tesla C1060 112.1 91.3 19.6 17.6
GTX 480 309.3 285.3 61.3 55.0
TABLE I

SPEEDUP OF THE HARDWARE IN THE LEFT COLUMN IN RELATION TO THE
HARDWARE IN THE TOP ROW (NUMBERS IN PARENTHESIS INDICATE NO.
OF CORES USED) USING p = 100, R = 4, AND 10 GENERATIONS.

For other algorithms people have suggested the use of
—use_fast_math to speed up calculation on the GPU. While a
better speedup could be achieved (62 instead 55 when comparing the
GeForce GTX 480 to the Xeon CPU) we found that solution quality
degraded too much (see Fig. 1) to include the results in a competitive
comparison.

The phenomenon of solution quality degradation is easily explained
by high-precision floating-point calculations being required when

3A weight adjustment, or weight delta, Aw;; between node ¢ and j is
calculated as Aw;; = —nx;6; with 7 a manually set learning rate, x; the
output of node 4, and J; the contributing error of node j.

propagating § values backwards through the network during training:
typically the value decreases by an order of magnitude for each
hidden layer it passes; should the value become small enough to
be influenced by imprecise calculation the training of the network is
corrupted.

fast math —a—
normal —e—

0.32

0.31

0.3

0.29

best fitness

0.27

0.26

0.25

0.24

0 5 10 15 20 25
generation

Fig. 1. Fitness development over 25 generations (1 = 1000, R = 8).

V. CONCLUSION

Although we deliberately chose the CPUs from today’s high-end
range, they are clearly outperformed by both GPUs, despite their
higher price tag — $688 for the Opteron 2434 and $875 for the
Xeon X5650 compared to the fast GeForce GTX 480 for $300.

However, when it comes to lengthy calculations initial acquisition
cost of hardware is often negligible when put in relation to cost
caused by hardware operation, i.e. power usage.

To come up with a good NN for prediction, we ran the algo-
rithm with a population of 5000 individuals and 32 backpropagation
instances over 20 generations. On the GeForce GTX 480 the config-
uration executed for about 17 hours. This setup would have required
an estimated 38.5 days on the fast Xeon CPU amounting to a total of
87.9 kWh used power, compared to 4.4 kWh consumed by the GTX
480.

In conclusion, all obtained results back up our hypothesis of the
algorithm being infeasible to run on the CPU, thus justifying the time
invested in parallelizing it for the GPU.

REFERENCES

[1] B. K. Wong, V. S. Lai, and J. Lam, “A bibliography of neural

network business applications research: 1994-1998) Computers &

OR, vol. 27, no. 11-12, pp. 1045-1076, 2000. [Online]. Available:

http://dx.doi.org/10.1016/S0305-0548(99)00142-2

M. O’Neill, “Automatic programming in an arbitrary language: Evolving

programs with grammatical evolution,” Ph.D. dissertation, University Of

Limerick, Ireland, Aug. 2001.

[3] R.Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon,

Parallel programming in OpenMP. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2001.

J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010,

version 1.3.0. [Online]. Available: http://www.meganewtons.com/

[5S] M. Harris, “Optimizing parallel reduction in cuda,”
NVIDIA Developer Technology, 2008. [Online]. Available:
http://www.mendeley.com/research/optimizing-parallel-reduction-cuda/

[2

[

[4

—

4Power usage was calculated using only TDP values of the CPU respec-
tively the GPU, neglecting the power required to operate the hardware, to
allow a direct comparison of both architectures.

