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1. INTRODUCTION
This application solves the quadratic assignment problem

(QAP) [1]. In QAP, we are given l locations and l facili-
ties and the task is to assign the facilities to the locations
to minimize the cost. We chose QAP for the following rea-
sons: First, problem sizes of QAPs in real life problems are
relatively small compared with other problems in permuta-
tion domains such as the traveling salesman problem (TSP)
and the scheduling problem. This enables us to use the
shared memory of a GPU e�ectively. Second, QAP is one
of the most di�cult problems among problems in permuta-
tion domains. Thus, QAP is a good test bed to evaluate an
optimization algorithm.
As the parallel method, a multiple-population, coarse-

grained GA model was adopted. Each subpopulation is
evolved by a multiprocessor in a CUDA GPU. At prede-
termined intervals of generations all individuals in subpop-
ulations are shu�ed via the VRAM of the GPU. Applying
local search in solving QAP is very common in evolutionary
algorithms [2, 3, 4]. Popular local searches used in solv-
ing QAP are the taboo search (TS) and 2-OPT heuristic.
However, to apply these local searches e�ciently, we need
a large memory for each parallel thread. For example, the
size needed for taboo search [5] is 32l2 + l bytes. To take
this size space for each thread in the shared memory with
current GPU is almost impossible. Thus, we will not apply
any local search for GPU. We applied local searches (2 OPT
Best Move and 2 OPT First Move) for CPU.
The instances on which this algorithm was tested were

taken from the QAPLIB benchmark library at [6]. Our
results were promising, showing the performance of GPU
programs without local searches is comparative to or even
better than the performance of CPU programs with local
searches on the Intel R⃝ CoreTM i7 965 processor, which is
one of the fastest processors available currently.
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2. QUADRATIC ASSIGNMENT PROBLEM
(QAP)

In QAP, we are given l locations and l facilities. For each
pair of locations i and j, we are given their distance dij .
For each pair of facilities i and j, we are given the �ow
fij between these facilities (regardless of their locations).
The cost of each assignment, φ, is given by the sum over-
all pairs of locations of the product of the distance between
these locations and the �ow between the facilities assigned
to these locations. Assignments of facilities to locations can
be encoded as permutations. The location for facility i is
given by the value at position i of the permutation. The
cost for such an assignment is given by

cost(φ) =

l
X

i=1

l
X

j=1

fijdφ(i)φ(j). (1)

The task is to minimize cost(φ) over all possible assign-
ments (permutations). Intuitively, fijdφ(i)φ(j) represents the
cost contribution of simultaneously assigning facility i to lo-
cation φ(i) and facility j to location j.

3. THE BASE GA MODEL FOR QAP
We describe the base GA model for QAP which is common

both for GPU computation and CPU computation. In this
study we use GA using commonly used crossover operators.
Figure 1 shows the base GA model for QAP in this research.
Let N be the population size. We use two pools P and W
of size N . P is the population pool to keep individuals of
the current population, and W is a working pool to keep
newly generated o�spring individuals until they are selected
to update P for the nest generation. Then, the algorithm is
as follows:

Step 1 Set generation counter t ← 0 and initialize P .

Step 2 Evaluate each individual in P .

Step 3 For each individual Ii in P , select its partner Ii (i ̸=
j) randomly. Then apply a crossover to the pair (Ii ,
Ij) and generate one child I ′

i in position i in W .

Step 4 For each I ′
i, apply a mutation with probability pm.

Step 5 Evaluate each individual in W .
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Figure 1: The base GA model for QAP

Step 6 For each i, compare the costs of Ii and I ′
i. If I ′

i is
the winner, then replace Ii with I ′

i.

Step 7 Increment generation counter t ← t + 1.

Step 8 If the termination criteria are met, terminate the
algorithm. Otherwise, go to Step 3.

For crossover operators, we perform From preliminary
tests using two well known operators, i.e, the order crossover
(OX) [7] and the partially mapped crossover (PMX) [8] by
implementing the GA model both on CPU and GPU, we
used PMX operator. For mutation operator, we used a swap
mutation where values of two randomly chosen positions in
a string are exchanged. Strings to which the mutation are
applied are probabilistically determined with mutation rate
of pm.

4. PARALLEL GA MODEL FOR GPU COM-
PUTATION

The GPU NVIDIA GeForce GTX285 which we use in this
study has 30 multiprocessors (MPs) and each MP has 8
stream processors (SPs) sharing 16KB high speed memory
among them. To use this machines features e�ciently, we
divide individuals into subpopulations of size 128 each. For
each subpopulation, we use the base GA model described in
Section 3. So, we allocate the population pools P and W
described in Section 3 to the shared memory of each MP.
We de�ne the total number of subpopulation as 30 × k(k =
1, 2, ...). So, the total individuals number with this model is
128 × 30 × k. The parameter k �nally determines the total
thread number in CUDA programming and the total thread
number is the same with the total individuals number.
The procedure of the parallel GA model for GPU compu-

tation is as follows:

(1) In the host machine, all individuals are shu�ed. Then,
they are sent to the VRAM of the GPU.

(2) For a subpopulation not yet processed, each MP selects
one of such subpopulations, and copies the correspond-
ing individuals from VRAM to its shared memory,
and performs the generational process up to Ginterval

generations, and �nally copies the evolved individuals
from its shared memory to VRAM.

(3) The above process is repeated until all subpopulations
are processed.

(4) Then, all individuals are copied back to the memory of
its host machine and merged.

(5) These processes are repeated until termination criteria
are satis�ed.

As seen in these descriptions, this parallel GA model is a
variant of distributed GAs.

5. IMPLEMENTATION DETAILS FOR GPU
COMPUTATION

To load as many individuals as possible in shared memory,
we represent an individual as an array of type unsigned char,
rather than type int. This restricts the problem size we can
solve to at most 255. However, this does not immediately
interfere with solving QAP because QAP is fairly di�cult
even if the problem size is relatively small.
Let l be the problem size of a given QAP instance. Then,

the size of each individual is l bytes. So, the size of popu-
lation pools P and working pool W is 2l × N where N is
the number of individuals allocated to each MP at the same
time. We have only 16KB shared memory per MP. To max-
imize both l and N , we chose N as 128 and the shape of a
thread block as 128×1×1 under the assumption that l is at
most 56. In our implementation, we represent each individ-
ual as an array of L elements of type unsigned char and L is
�xed to 56 regardless of l. Consequently, for W and P , our
implementation consumes 2L × N = 2 × 56 × 128 = 14336
bytes in shared memory.
We stored distance matrix dij and �ow matrix fij in the

constant memory space so that they can be accessed via
cache. To save the memory space size for these matrices,
unsigned short was used for the elements of these matrices.
We implemented a simple random number g enerator for
each thread with independent seed number.
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