
A GPU Accelerated Evolutionary Computer Vision System

Eberhard Karls Universitat Tubingen
Wilhelm-Schickard-Institut fur Informatik

Abt. Rechnerarchitektur, Sand 1, 72076 T-ubingen
marc.ebner@wsii.uni-tuebingen.de

http://www.ra.cs.uni-tuebingen.de/mitarb/ebner/welcome.html

We have used the graphics processing unit (GPU) of the
graphics card to create an evolutionary image processing
system which is able to learn how to detect a user-specified
object in an image. The system receives an image sequence
as input. The user only has to tell the system where this
object is located. This is done by using the mouse pointer.
The user simply moves the mouse over the desired object
and then presses the mouse button as long as the object
is located under the mouse pointer. The user follows this
object over several frames while keeping the mouse button
pressed. As this is being done, the system evolves a popula-
tion of image processing algorithms by exploiting the power
of the GPU at interactive rates. Our system is the first GPU
accelerated evolutionary image processing system (Figure 1)
which allows the automatic creation of object detection al-
gorithms [2]. This is the first step towards building fully
adaptive evolutionary vision systems [1].

Consumer graphics cards are specifically optimized to ren-
der images at high speeds. A three-dimensional scene con-
sists of numerous triangles which are fed to the graphics
card. In order to obtain photo-realistic images, small pro-
grams can be sent to the graphics card to specify computa-
tions which should be carried out per vertex (vertex shaders)
or per pixel (pixel shaders). The OpenGL shading language
(OpenGLSL) has been developed as a standard to program
vertex and pixel shaders. This shading language as well as
the computations which are carried out on the graphics card
are highly optimized for rendering three-dimensional scenes
consisting of thousands of triangles. We use this program-
ming paradigm to perform image processing on the graphics
card efficiently.

To fully exploit the power of the GPU, we use exactly the
same paradigm which is used when rendering images. Only
a single polygon is rendered. This polygon represents the
output image of the image processing algorithm. The image
processing algorithm (generated by simulated evolution) is
fed to the pixel shader. This pixel shader is then used to
compute the correct output color for each pixel. The original
input image is supplied to the pixel shader as a texture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montreal, Canada.
Copyright 2009 ACM 978-1-59593-697-4/07/0007 ...$5.00.

input image sequence

output of best individual

done?

initialization of algorithm population

resulting algorithm

variation

reproduction

selection

evolutionary algorithm

Figure 1: Evolutionary Object Detection System.

sub−detector 2

image processing
algorithm

lution

tation

Column 0

operators
processing

image

edge

convo−

segmen−

addition

step

max

function

gate

detection

103 72 23 173 54 30

Individual (Byte Array)

xn x n matrix of simple operatorsy

sub−detector 1

Interpretation as

Figure 2: The genotype of an individual is simply
a byte array which is modified through simulated
evolution.

The pixel shader we use is actually a universal pixel shader
which is able to interpret the genetic material of an indi-
vidual of the population as an image processing algorithm.
Each individual consists of an array of integers and repre-
sents an image processing algorithm (Figure 2). This a vari-
ant of the Cartesian Genetic Programming approach. For
each input image, all of the individuals of the population
are evaluated by sending the array of integers to the GPU.
The input image is loaded into the GPU as a texture only
once. In order to fully exploit the power of the GPU we
first compute modified output data by accessing the orig-
inal texture of the image. Operators include convolution,
edge detection, Laplacian or image segmentation.

The GPU is used to compute the output image and also to
display the input image and the output of the three best im-

age processing algorithms. The evolutionary algorithm itself
is run on the main CPU. The evaluation of the individuals
and the display of the images take approximately 94% of
the total time. We have used GLUT such that the system
can be compiled easily for Mac OS X, Linux or the Microsoft
Windows Operating system. Since the OpenGLSL is used to
compute the output image, the code is highly portable. The
system can be run on any graphics card as long as the graph-
ics card supports vertex and pixel shaders, e.g. OpenGLSL
2.0 and up.

Each operator can be applied to the original image at a
slight offset or scale. This is readily possibly by using the
texture processing operations of the OpenGLSL. The mip
map mechanism allows us to read out the texture at any
scale. Once the major operators such as convolution, edge
detection or segmentation have been applied, the results of
these operations is recombined using arithmetic or threshold
operations. These operations are arranged in a nx × ny

matrix. The input is fed from left to right through this
matrix. On the right hand side we read of the output of a
total of ny sub-detectors. Each row of the right hand side of
the matrix can be viewed as a sub-detector which is designed
by evolution to extract the desired object.

Our system adheres to the image rendering paradigm as
close as possible in order to use the GPU as efficiently as
possible. That is why image processing operators such as
convolution and edge detection are applied first and then the
output of these operators is recombined to detect the object.
Allowing full image processing operators at every position
of the matrix would also have been possible. However, in
this case, we would have to read out the result computed
by an operator from the graphics card, and then again send
this result to the graphics card as a texture since textures
are read only. We have reduced the texture transfer between
the CPU and the GPU to a minimum (only the input image
is transfered). Thus, the GPU architecture with read only
texture and fast rasterization of triangles is fully exploited
by our system.

The output of all sub-detectors is averaged to obtain the
overall output for the input image. The object is said to be
located at the position which has the highest response. Let
~pd be the detected position and let ~pm be the position spec-
ified by the user through the mouse pointer. The quality of
the detector is measured by computing the distance between
the detected position and the position of the mouse pointer.
This distance is used as the fitness f = (~pd − ~pm) of an indi-
vidual. A perfect individual would always respond with the
position directly beneath the mouse pointer. It would have
a fitness of zero.

Individuals from the current population are modified slight-
ly using mutation and crossover operators. The crossover
operator selects two individuals and exchanges parts of the
genetic material of one individual with the other individual.
The mutation operator changes some of the genetic material
at random. Starting with µ parent individuals λ offspring
are generated. Fitness is computed for the current input im-
age for both, parent and offspring. All individuals, parent
and offspring, are sorted with respect to fitness. Individuals
with the same fitness are considered to be identical. Only
the best µ individuals are selected as parents of the next
generation. This is the Darwinian mechanism “survival of
the fittest”. In the course of several generations, the indi-
viduals adapt to the given problem, locating the detecting

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 3 4 5 6 7 8 9 10

F
P

S

Number of Operators in Column 0

FPS

GPU accelerated
CPU only

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of Operators in Column 0

Speedup

(a) (b)

Figure 3: (a) FPS obtained with and without GPU
acceleration. (b) Speedup.

the desired object in the image.
The system was tested on several different video sequences.

The task was to locate a sample object (bird, fish, duck, or
street sign) within the image. In each case, the system was
able to evolve a reasonably good detector within relatively
short amount of time. A reasonably good detector in this
case is a detector which is located somewhere on the object
but does not have to be positioned exactly on the position
of the mouse pointer. What was particularly surprising is
that the system evolved quite robust detectors which con-
tinued to extract the object after evolution was turned off
even though the object was distorted or its scale changed.
Writing similarly robust detectors would have taken weeks
to develop manually.

Figure 3(a) shows the frame rate which is achieved when
each individual consists of a n+2×2 matrix of operators, i.e.
n high level operators and then a 2× 2 matrix of arithmetic
operations to recombine the output and 23 individuals are
evaluated for each input image. Each image had a size of
320×240 pixels. The speedup (depending on the number of
high level operators used) is shown in Figure 3(b). This data
was measured on a Linux system (Intel Core 2 CPU running
at 2.13GHz) equipped with a GeForce 9600GT/PCI/SEE2.
Given a more powerful graphics card, the system can eas-
ily be scaled up. One can simply increase the number of
algorithms which are evaluated for each image or one can
increase the size of the images which are processed. Ap-
proximately 92% of the total computation time are used
to perform image processing on the GPU, 2% are used for
rendering and the remaining 6% is used for all other com-
putations on the CPU including the operations of the evo-
lutionary algorithm.

A real-time evolutionary object recognition system work-
ing at interactive rates is of considerable interest to everyone
working in the field of evolutionary image processing. Until
now, algorithms were usually evolved offline. Without the
power of the GPU interactive rates would not be possible.
With our evolutionary system we are able to evolve object
detectors within minutes.

1. REFERENCES
[1] M. Ebner. An adaptive on-line evolutionary visual

system. In E. Hart, B. Paechter, and J. Willies, editors,
Workshop on Pervasive Adaptation, Venice, Italy,
pages 84–89. IEEE, 2008.

[2] M. Ebner. A real-time evolutionary object recognition
system. In L. Vanneschi, S. Gustafson, A. Moraglio,
I. D. Falco, and M. Ebner, editors, Genetic

Programming: Proceedings of the 12th European

Conference, EuroGP 2009, Tübingen, Germany, April,
pages 268–279, Berlin, 2009. Springer.

