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Abstract

This paper presents implementation details of GPU-based genetic
algorithm submitted to GPUs for Genetic and Evolutionary Com-
putation competition taking place at GECCO’09.

1 Introduction

Genetic algorithm (GA) is a stochastic optimization method in-
spired by nature evolution. Because of their parallel nature, they
have been parallelized many times.

Graphic Processing Units (GPU) were originally targeted for
rasterization of graphics primitives. Today GPU’s are more likely
fast multicore processors capable of performing complex mathe-
matical tasks.

There are many ways how to exploit GPU’s potential for gen-
eral purpose computation (GPGPU). One option is to employ
Compute Unified Device Architecture (CUDA) framework.
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Figure 1: Mapping of GA to CUDA software model. Every
thread controls one individual, every block represents
one independent island. The fast shared memory is
used for local island population that leads to the com-
putationally intensive execution with high degree of
paralelism. Migration is performed through the main
(global) memory.

2 GPU-Based Genetic Algorithm

GPU’s are optimised especially for SIMD-type processing with
massive paralelism. Hence the proposed optimization tool should
exploit a fine-grained island-based GA containing as few branches
as possible. Existing CUDA applications also benefit from usage

of the fast shared memory within GPU multiprocessors. Data
consistency in blocks can be achieved using lightweight barrier
syncthreads() [2]. Unfortunately, blocks themselves cannot be
synchronised easily without performance loss.

Fig. 1 shows the GA mapping to blocks and threads. The
entire GA is executed on GPU employing shared memory within
processor to maintain the population and achieve the best per-
formance. In addition, asynchronous migration between islands
is used (see Fig. 3), which turned out to be efficient way how to
improve convergence.
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Figure 2: Scheme of tournament selection with crossover. First,
every thread compares its own individual with ran-
domly chosen one, and writes index of better one to
the shared memory to notify neighbors of a more suit-
able partner to crossover. Next, the parallel random
numbers generation is performed – first half of gener-
ated array is used by thread pairs for decision whether
to perform the crossover or not; second half is used as
weights for arithmetic crossovers. This wastes the se-
lection in the case that crossover is not finally made,
but it is 0.1–2% faster, because of SIMD GPU opti-
mization.

Tournament selection and arithmetic crossover are tighly con-
nected, as it is evident from Fig. 2, so that limited shared memory
is used efficiently. Mutation and fitness evaluation is performed
in parallel for each thread (individual).

CUDA currently does not support the function pointers. More-
over, much of the code speed optimization (cycle unrolls to static
code, allocation of the shared memory, elimination of some con-
ditions,. . . ) is done by a compiler. Hence, compiler preprocessor



directives are used for the setting of parameters instead of the
standard runtime parametrization. That turned out to be highly
beneficial for maximum speedup.

Our implementation also utilizes Bitonic-Merge sort algorithm
[3], and both uniform and Gaussian PRNG’s [1] described in
nVidia GPU GEMS book series.
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Figure 3: Scheme of migrations between islands. First, the lo-
cal island population is sorted according its fitness us-
ing Bitonic-Merge sort. Then, M threads write the
best chromosomes to the main memory and other M
threads read (in parallel) the chromosomes from a
neighbour island, overwriting thus M worst individ-
uals.

3 Results

The speedup of our implementation was investigated using 2-year
old consumer-level graphics card GeForce 8800 GTX (128 cores)
and a single-threaded, optimised program (approx. 20% faster
than GALib) running on the latest processor Core i7 920 at 3.2
GHz. Our innovative mapping of the genetic algorithm to CUDA
software model leads to speedups up to 2600 times (see Fig. 4),
thus allowing the tasks that took hours to be solved in second-
order time. Speed and convergence were tested using Griewank’s,
Michalewicz’s and Rosenbrock’s functions. In all cases, 95% of
maximum speedup is reached using the population of only 32 in-
dividuals per island. The quality of results produced by GPU
island is practically the same as for CPU, in addition, the migra-
tion significally increases convergence to a global optimum.
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Figure 4: The GPU speedup on Griewank’s function depending
on GA parameters. Peak performance is achieved with
population sizes from 32 to 256 individuals on 256, 512
and 1024 islands. The islands can be independently
simulated on multiple GPU’s/graphics cards, the opti-
mization is thereby highly scalable.

The proposed technique is expected to scale very well to fu-
ture graphics units and multiple graphics cards allowing furher
speedup. GPU’s also excel in the computationally-intense appli-
cations, i.e. complex problem-fitness functions.

GPU implementation achieves approximately 230-times bet-
ter power-to-watt ratio then CPU, thus electrical energy is saved
during the computation. Furthermore, the graphics card used is
hundreds times cheaper than any CPU grid running at the same
speed.

Permitting of compiler parameter -use_fast_math leads to
the significant speedup while maintaing good quality of results.

Table 1: Overall performance of GA running on CPU and GPU.
The performance unit is chosen to be population-size
independent IIGG (Island poulation size * #Islands *
Genotype length * #Generations) per second. GPU
performance highly varies according to degree of par-
alelism, but it always outperform any CPU, even for
only 2 individuals.

arch. fitness function
IIGG·106

per second

CPU
Rosenbrock’s function 5.4 to 5.9
Michalewicz’s function 2.9 to 3.3
Griewank’s function 3.9 to 4.0

GPU
Rosenbrock’s function 14.2 to 8877

Rosenbrock’s function – fastmath 18.5 to 11914
Michalewicz’s function 6.9 to 5893

Michalewicz’s function – fastmath 11.7 to 9894
Griewank’s function 9.6 to 7108

Griewank’s function – fastmath 15.9 to 10507
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Figure 5: Comparsion of the results quality after 50 generations
on Griewank’s function. The GPU results are similar
to CPU version with elitism. Compiler parameter -
use fast math has no negative effect on the quality.

4 Conclusions

GPU’s have proven their abilities for acceleration of genetic al-
gorithms. Not only impressive speedups were achieved, but also
high quality solutions were met.

The area of applications is very large – automatic design of
new/patentable/innovative solutions, optimisation of design/ pro-
duction/scheduling, fast solutions to NP problems, search for ex-
tremes in complex numerical functions, huge speedup and lower
computational costs of existing GA applications and many others.

Our solution can be executed at any nVidia GPU supporting
ShaderModel 4.0 and Linux/Windows platform.
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