
Implementation of a Simple Genetic Algorithm within the
CUDA Architecture

Stefano Debattisti, Nicola Marlat, Luca Mussi, Stefano Cagnoni
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Parma

Viale G. Usberti 181a, I-43124 Parma, Italy
{nicola.marlat}{stefano.debattisti}@studenti.unipr.it

{mussi}{cagnoni}@ce.unipr.it

1. INTRODUCTION
The increasing interest of researchers in using low cost

GPUs for applications requiring intensive parallel comput-
ing is due to the ability of these devices to solve parallelizable
problems much faster than traditional sequential processors.
The first applications of evolutionary algorithms (EAs) on
GPUs have been developed to solve specific image processing
problems; later, general purpose genetic algorithms (GA)
have been implemented. However, those implementations
used texture rendering for the encoding and evaluation of
individuals, while, most of the times, still executing on the
CPU tasks like pseudo-random number generation or se-
lection. This project presents an implementation of a GA

within the nVIDIA CUDA
TM

environment, which avoids the
use of textures as data structures and performs all evolution
on the GPU, reducing as much as possible the exchange of
data with the CPU.

2. IMPLEMENTATION
The only process that this project requires to be executed

by the CPU is data structure initialization on the GPU de-
vice. In particular, such a process allocates memory for the
encoded population and initializes it with random bits. The
core of this application is therefore virtually fully executed
on the device side. We developed one kernel for each of the
four typical stages of a GA: selection, crossover, mutation
and fitness evaluation. During evolution, they are scheduled
one after another, for a number of times equal to the total
amount of desired generations, by the CPU, but no data
need to be transferred between the two parts. Also pseudo-
random numbers are generated GPU side with the Mersenne
Twister kernel provided by the CUDA SDK.

While designing the kernels, we followed two main guide-
lines: maximization of the parallelism and minimization of
the accesses to global memory (which is the main bottleneck
of the CUDA architecture). At the same time, to optimize
also the coalescence for device memory operations, we en-
coded the population of individuals with a single string of
uchar (one byte for each bit of the genome) having care
in allocating, in any case, multiples of sixty-four bytes for
each individual in order to fulfill the requirements for byte
alignment. This results in a waste of memory, but has clear
benefits with respect to execution times.

2.1 Selection
We opted for a tournament selection strategy. A compu-

tational grid divided into block of 32 threads has the duty
to compose the mating pool with each thread within a block
dealing with the selection of one individual. The tourna-
ment size is a variable which must be chosen by the user.
The texture interface has been exploited to mask fragmented
accesses to the vector containing fitness values.

2.2 Crossover
Two-point Crossover was preferred to single-point since

it offers better performances even if it is computationally
more demanding. The grid of the crossover kernel depends
on both the population size and the crossover probability,
with each block performing the crossover of two individu-
als. To minimize the number of memory read accesses, each
thread manages four bits at a time, accessing the popula-
tion as a vector of uchar4 : the size of each block is therefore
approximately equal to one quarter of the genome length.

2.3 Mutation
We have chosen a classic mutation operator. Again, the

population is seen as small blocks of four bits through uchar4
pointers, each one mutated by a single thread by means of
bitwise exclusive OR operations. Scheduling a grid with a
sufficient number of 32-thread blocks is needed to mutate
the whole population.

2.4 Fitness
The problem solved by this demo application is the classic

ONEMAX: the fitness function is the sum of the bits of an
individual and the goal is to obtain an individual encoded
by as many ’1’ as possible. The kernel is launched with one
block per individual: threads within each block read four
bits of the genome at one time (once again through uchar4
pointers) and load their sum into a vector in shared memory.
The final value of each individual’s fitness is then computed
by means of a parallel reduction.

 0
 50

 100
 150

 200
 250

 300

 0

 100

 200

 300

 400

 500

 600

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

Mean Execution Time (ms)

Genome Length

Population Size

Mean Execution Time (ms)

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1
 0.11
 0.12
 0.13

Figure 1: GAGPU: Average time per generation.

3. EXPERIMENTAL RESULTS
Experiments were run on a PC equipped with an Intel

Core2Duo processor running at 1.86GHz with a GeForce
8800 GT video card from nVIDIA corporation equipped with
1Gb of video RAM. As a first set of results we report the



average execution time of GAGPU. In figure 1 we plot the
average execution time for one GAGPU generation vs. both
population size and genome length. Note that on our card,
which is equipped with Streaming Multiprocessors (SMs) of
computing capability 1.1, the design of our kernels limits
these sizes to 512 and 256 respectively. As can be seen,
execution time scale linearly with the number of individuals
(with a low derivative), while step discontinuities appear
with the growth of the genome size. Every 64 bits (recall
that the actual size of an individual is always a multiple of 64
bytes) the load of the GPU (measured in number of blocks
and number of threads per block to be executed) has a sharp
increment. Anyhow, using a device having a higher number
of available SMs (14 in our card) should flatten these steps
with a consequent improvement on execution times.

 0
 50

 100
 150

 200
 250

 300

 0

 100

 200

 300

 400

 500

 600

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Speedup

Genome Length

Population Size

Speedup

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Figure 2: GAGPU vs TinyGA: Speedup

 0
 50

 100
 150

 200
 250

 300

 0

 100

 200

 300

 400

 500

 600

 0
 4
 8

 12
 16
 20
 24
 28

Speedup

Genome Length

Population Size

Speedup

 0

 5

 10

 15

 20

 25

 30

Figure 3: GAGPU vs sequentialGAGPU: Speedup

In a second test, the above performances were compared
to those obtained with TinyGA, a sequential GA implemen-
tation by Riccardo Poli (which won the GECCO TinyGA
competition in 2006) that can be considered as a lower limit,
as concerns GA computational requirements on sequential
architectures. Figure 2 shows the speedup achieved with
respect to TinyGA: for small search space dimensions and
population sizes, the two algorithms are nearly equivalent,
but the more the problem dimension and the population
increase, the more GAGPU gains advantage. The maxi-
mum speedup rate was 19 at population size 512 and genome
length 256. Discontinuities in figure 1 are obviously present
also in the speedup graph, which has a periodic trend. In-
stead, in figure 3 it is possible to see the speedup achieved
by a well-coded fully equivalent sequential version of our
GAGPU: in this case the speedup is close to 26 times.

Table 1: Cuda Profiler Results
kernel usec ldu ldc stu stc it
RGPU 1402 2355 0 0 117760 0.56
mut 6.86 0 219 0 292 0.2
fit 5.58 0 73 68 10 0.46
cpySel 4.95 34 75 0 293 0.27
xover 3.70 0 46 0 147 0.29
sel 3.05 0 4 0 8 0.02
stats 3.84 0 0 0 0 0

In table 1 we report some data about our GAGPU ob-
tained by the CUDA Profiler. In particular, columns ldu/ldc
and stu/stc highlight that there are no global uncoalesced
read-write operations. Actually, there are just few in the
cpySel and fit lines: this is due to the first thread in each
block which reads/writes from/to an un-aligned vector. This
does not slow the system at all, because there are no multi-
ple operation to be serialized. It is worth noticing that the
average execution time of each kernel is perfectly compara-
ble with the one of a device-to-device memcpy operation of
the same amount of processed data. This confirms that the
computational intensiveness of a GA is not that high to fully
exploit the power of a GPU (see the “it” column of table 1).

Figure 4: GAGPU: kernels’ occupancy

The last figure 4 also reports data from the profiler. It
shows, in decreasing order, the percentage of GPU occupa-
tion of all kernels. One can notice that they have very similar
GPU occupation (a relevant slice of the cake is occupied by
the pseudo-random number generator). As a consequence,
no kernels slow down the system more than others. This
is reflected in a good execution time scaling with problem
dimension and population size (see figure 1).

4. CONCLUSIONS
All the results reported show the efficiency of our GAGPU

as compared to a well-coded sequential version. A compar-
ison with a generic GA library, such as GAlib, would re-
sult a much greater speedup. If we consider that the ONE-
MAX objective function utilized in our experiments is one of
the less computationally intensive, it is reasonable to expect
even better results on problems with complex parallelizable
fitness functions.

Finally, we want to highlight that our system is versatile
and modular and, even in its present version, can be general
enough to be used to optimize a vast classes of problems,
provided a proper fitness function kernel is developed. As
well, it can be easily extended introducing other operators
or fitness functions, as the different steps of evolution are
split into independent kernels. We plan to introduce this en-
hancements in the near future, to make GAGPU a complete
and extremely efficient environment for GA applications.


