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ABSTRACT
Biological systems are both complex and robust. Because of
this epistasis, or gene-gene interactions, are thought to be
a ubiquitous component of common human diseases. Un-
fortunately, due to the non-linear nature of these interac-
tions, detecting and characterizing epistasis requires algo-
rithms which are combinatorial in complexity. One such
algorithm is Multifactor Dimensionality Reduction (MDR).
Expert knowledge guided evolutionary computing wrappers
around MDR have previously been shown to be a powerful
way to efficiently analyze datasets for interactions. Evolu-
tionary computing can effectively address some of the chal-
lenges these datasets present. Unfortunately examining the
statistical significance of results requires permutation test-
ing, which increases the computation requirements by a fac-
tor of 1000. Here we implement an expert knowledge guided
ant system on graphics processing units (GPUs) and show
that the GPU implementation makes the rigorous statistical
analysis of large datasets practical.
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1. INTRODUCTION
New technologies in human genetics facilitate the mea-

surement of more than 106 DNA sequence variations across
the genome. The challenge in human genetics has shifted
from the measurement of these variations to the develop-
ment of computational and statistical tools capable of iden-
tifying genetic variations that play a role in the initiation,
progression and severity of common human diseases such as
breast cancer. Unfortunately this endeavor will be difficult
due to epistasis; that is, non-additive gene-gene interactions.
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Epistasis is believed to be a ubiquitous component of the ge-
netic architecture of common human diseases.

Two approaches have previously been taken with multi-
factor dimensionality reduction (MDR) to address this prob-
lem. The first involves selecting a subset of the space to
search. Previously Greene et al. [1] have shown that an
expert knowledge guided ant colony optimization (ACO)
approach can successfully discover good solutions despite
examining only a small subset of the search space. The
second, used by Sinnott-Armstrong et al. [2], involves ac-
celerating the MDR analysis itself using high performance
non-traditional computing platforms such as graphics pro-
cessing units (GPUs).

Both approaches alone provide substantial decreases in
analysis time but moving from developing good models to as-
sessing statistical significance requires permutation testing.
Permutation testing, the method used to assess significance,
necessitates an additional 1000 fold increase in computation
time. To address this issue we develop an expert knowledge
guided ACO implementation for GPUs to further improve
performance and make the statistical analysis feasible.

2. ALGORITHMS

2.1 Novelty
While both the expert knowledge guided ACO approach

and an MDR implementation for GPUs have already been
developed, the combination of both necessitates changes in
the MDR implementation. For the previous GPU imple-
mentation of MDR, the architecture relied on using a grid
structure for executing across all combinations of attributes
and the indices were stored in registers. For the ant colony
approach, a different thread access structure was needed.
Here the grid indices are offsets into an array of random
numbers instead of actual attribute indices.

2.2 Efficiency
The algorithm is divided into a few parts, each of which

has a different efficiency. The weight summing, in which
all of the pseudo-probabilities resulting from offsetting the
scores of previous generations are added together to scale,
is very efficient and is based on the fast parallel reduction
whitepaper released by NVIDIA. It exploits coherent reads,
half-warp synchronization, unrolled loops, and many other
structures which lead to very high efficiency. The same is
true of most of the reduction steps within the MDR al-
gorithm itself. Roulette wheel selection is run on a single



thread and distributed through a shared variable and the
advantages are substantial over a CPU selection process.

2.3 GPU-side
Both ACO and the MDR components are implemented

on the GPU. Only random number generation, reading of
the dataset, and the collation of results from multiple GPUs
are run on the CPU. The authors evaluated the NVIDIA
Mersenne Twister random number generator but found that
the Python implementation was sufficiently fast and reduced
code complexity thus improving maintainability.

2.4 Elegance
Conceptually, we implement the previously described ACO

approach for MDR which uses a pheromone to select at-
tributes based on a combination of expert knowledge and
results from previous iterations [1]. The implementation of
the ACO portions of the code are designed to be modular
and use the map-reduce methodology almost exclusively.

2.5 Portability
The implementation uses PyCUDA which is supported

on Windows, GNU/Linux, and Mac OS X machines with
any 8800 series or higher NVIDIA GPU. Early GPUs which
do not support atomic operations require a flag to ensure
compatibility.

2.6 Suitability
On the GPU, decisions about shared memory coherency

and constant memory are required. In these cases, the code
has been rigorously evaluated in multiple different scenar-
ios and the most efficient has been selected. Furthermore,
asynchronous execution support is levied and thus minimal
CPU overhead is required while executing.

3. SPEED

3.1 Speedup
Three different execution patterns were tested, which uti-

lize one, three, or six GPUs. The results are shown below in
Table 1. The highest speedup was with the largest number
of ants, and it increased performance by a factor of twenty
over the standard CPU solution.

3.2 Resources
The bulk of the code runs in a single kernel Bucketd which

has an occupancy of 50% according to the CUDA Occupancy
Calculator. The main limiting factor in the occupancy of the
main kernel is the shared memory, since the shared memory
usage increases linearly with the number of threads.

3.3 Scalability
The solution scales very well. It runs on multiple GPUs

on a single workstation (tested up to 6), and should allow for
seamless network execution although this feature is still un-
der development. Furthermore this implementation should
work on GPUs with any number of multiprocessors.

4. EVOLUTIONARY COMPUTATION

4.1 Utility
These results show that GPUs and evolutionary compu-

tation (EC) can be combined to make feasible the analysis

of large biomedical datasets for tasks that were previously
considered computationally prohibitive. EC, particularly in
the area of human genetics, has shown promise for solving
hard problems important for human health. The combina-
tion of EC and GPUs can greatly improve our understanding
of common human diseases.

4.2 Practicality
The previously described ACO approach reduces compu-

tation time requirements by examining smaller portions of
the dataset effectively but this presents a trade off between
computation time and the portion of the search space that
can be examined. By using GPUs, we can increase the
portion of the search space that can be examined while re-
ducing the amount of time necessary for the analysis. On
CPUs the discovery of a good solution is not computation-
ally prohibitive. Researchers, however, often want to know
not only what the best solution was but if it was statis-
tically significant. Assessing significance with permutation
testing requires randomizing the data 1000 times and the
re-evaluating these new datasets. On the CPUs this would
require 7277 minutes – an entire work week! On six GPUs
only 385 minutes would be required.

4.3 Science
In human genetics the challenge is both to develop predic-

tive genetic models and to show rigorously that these models
are able to significantly explain an individual’s disease risk.
For MDR, this requires permutation testing, which is com-
putationally expensive. By increasing the range of datasets
to which MDR can be effectively applied we improve our
ability to examine and understand epistasis and its role in
common human diseases.

5. BENCHMARK RESULTS
Config Updates Time 1 (s) Time 2 (s) Time 3 (s)
6 GPU 3600 23.004 21.503 24.740
3 GPU 1800 16.285 16.705 16.039
1 GPU 600 8.974 9.031 8.965
8 CPU 3600 442.000 419.516 448.396
8 CPU 1800 208.087 227.936 226.286
8 CPU 1200 144.662 143.523 139.819
8 CPU 600 54.297 75.257 47.998

6. DISCUSSION AND CONCLUSIONS
We implemented ACO for epistasis analysis in human ge-

netics on GPUs. We found that this approach greatly im-
proved the feasibility of permutation testing and thus the
assessment of statistical significance.
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