Particle Swarm Optimization within the CUDA Architecture

Luca Mussi, Stefano Cagnoni
Dipartimento di Ingegneria dell'Informazione
Universita degli Studi di Parma
Viale G. Usberti 181a, 1-43124 Parma, Italy
{mussi}{cagnoni}@ce.unipr.it

1. INTRODUCTION

The increasing interest of researchers in using low cost
GPUs for applications requiring intensive parallel comput-
ing is due to the ability of these devices to solve parallelizable
problems much faster than traditional sequential processors.
The first applications of evolutionary algorithms (EAs) on
GPUs have been developed to solve specific image processing
problems; at the beginning they were using textures render-
ing for the encoding and evaluation of individuals and most
of the times tasks like pseudo random numbers generation
and other evolutionary operations were executed on CPU.
This project presents an approach for the implementation
of PSO algoritms on GPUs which, by means of the nVIDIA

CUDATMenVironment, avoids the use of textures as data
structures and performs all evolution on the GPU, reducing
as much as possible the exchange of data with the CPU.

2. IMPLEMENTATION

In this work we chose to implement the 2006 standard
PSO on GPU: its main peculiarity stands in the use of a
random neighborhood topology for the determination of par-
ticles’ local best. The rationale behind this choice is the ab-
solute inadequacy of a PSO with synchronous bests update
(as it would be for a CUDAPSQ) and global best topology
for the optimization of multi-modal problems.

To effectively fully exploit the impressive computation ca-
pabilities offered by CUDA to develop a parallel PSO, the
best approach is probably to think about the main phases of
the algorithm as separate tasks, each one to be parallelized
separately: this way each phase can be accomplished by
means of a different kernel and the whole optimization pro-
cess can be achieved by scheduling many times in a row all
the basic kernels needed to perform one generational update
of the swarm.

Since the only way CUDA offers to share data among
different kernels is to keep it in global memory, the current
status of our PSO must be saved there: one of the first
problems to takle is therefore how to organize the PSO data
to exploit the GPU read/write coalescing capability.

Figure 1 shows the structures we adopted for the arrays
involved in our design. For instance, in the array which
stores the current “positions” the D elements used to en-
code one particle are always a multiple of sixteen. This way,
one block of threads that needs to load the current position
of a particle (i.e. for fitness evaluation) can always perform
a unique coalesced read operation which satisfy the require-
ments for byte alignment (since we use the floats, sixteen
elements correspond to sixty-four bytes). Additionally, this
organization permits to run several swarms at the same time
simply by playing with the threads’ indexes.

As for the generation of pseudo-random numbers on GPU,
we use the Mersenne Twister kernel provided within the
CUDA SDK. A brief description of the others kernels follows.

positions / velocities / best positions
B R S B R S

OXIYT TooIXTYT ool T TXTYT JaoIXTYT To[XTYT ol T IXTYT o[T T T T T T}
o dodody e dp T A d s dodody s dp dody o di o
5 D clmans 3 e

1 N

fitnesses / best fitnesses global best fitnesses

So Sy Sn

et e ——
(ETET TETETET TFT T TFT6T Tf] [ETELET T T T 1f]
RR~RRR~-R RR~-R HH5% 0 S
nN elements
global best positions
S, s Sx
OIylzl T T T I&X]ylzl T T T 1l T T [DXyl T [T 4]

D elements

Figure 1: CUDAPSO: Data Organization.

2.1 BestsUpdate

For each running swarm a thread block is scheduled with
a number of threads equal to the number of particles in the
swarm. Firstly, each thread loads in shared memory both
the current and the best fitness values of its corresponding
particle. Then, the need to update the best fitness value is
checked and, when this is the case, a flag for the particle’s
best position to be updated is set. Successively the current
best fitness value in the swarm, determined by means of par-
allel reduction, is checked against the best value found so far
(to be possibly updated) and, in case there is no improve-
ment, the random topology of the swarm is re-initialized.
Before the end, each thread/particle scans the neighborhood
map (implemented with a bitwise-matrix) and controls the
fitness values of the other particles to find its local best.

2.2 Position Update

A computational grid divided into block of 32 threads has
the duty to update the position of all particles being simu-
lated. Each thread manages the update of one element of
the positions and velocities arrays, irrespective of to which
particle (or to which dimension) it corresponds. At the
beginning the current position, best position, velocity and
best-position-update flag are loaded. In case the update flag
results set, the best position is updated and successively the
classical PSO equations are applied to the loaded values. At
the end all updated values are stored back to global memory
to be used by the fitness evaluation kernel.

2.3 Fitnesses Evaluation

The fitness function we implemented for this work is the
generalized Rastrigin’s function which is characterized by a
pretty high computational complexity and, at the same time,
by a high degree of parallelization. This kernel is scheduled
with a computational grid composed by one block for each

particle being simulated (irrespective of to which swarm it
belongs), each block being composed by a number of threads
equal to the problem dimensions. Each thread loads one co-
ordinate of the considered particle and calculates one partial
addend of the Rastrigin’s formula. The final sum is com-
puted, once again, by means of parallel reduction.

Mean Execution Time (ms)

500
450
400
350
300
250

2

N swarms

Figure 2: CUDAPSO: Mean execution time opti-
mizing the generalized Rastrigin’s function for 10000
generations. Times are in milliseconds.

3. EXPERIMENTAL RESULTS

Experiments were run on a PC equipped with an Intel
Core2Duo processor running at 1.86GHz with a GeForce
8800 GT video card from nVIDIA corporation equipped with
1Gb of video RAM. As a first set of results, in figure 2 we
report the average execution time of CUDAPSO vs. both
the number of swarms and the dimensions of the problem.
As it can be seen, times scale linearly with the dimensions
of the problem. The fact that, with only one swarm, the
derivative is close to zero highlights the good parallel design
of the whole system. Anyhow, using a device having a higher
number of available SMs (14 in our card) should further
flatten this graph with a consequent further improvement of
execution times.

speedup
50
40
30
20
10
0

100

60
) 40 2
N dimensions N swarms

0 1

Figure 3: CUDAPSO vs sequentialPSO: Speedup

In a second test, the above performances were compared
to those obtained with the original 2006 Standard PSO. Fig-
ure 3 shows the speedup achieved with its respect: even
if, for small problem dimensions, the sequential version is
twice as fast as the parallel one, the more the problem di-
mensions increase, the faster CUDAPSO runs with respect
to the reference. In particular the achieved speedup running
one swarm was of about 22 times (with Ndimensions = 100),
while it was close to 50 times running three swarm at the
same time.

Table 1: Cuda Profiler Results
kernel usec ldu Idc stu stc it

bestUp 10 0 1.57 0 4.57 0.01
posUp 2.95 857 2342 0 36.6 0.11

fit 2.32 0 4.57 8.57 1.14 0.10
RGPU 4346 2560 0 0 400000 0.51
fBestUp 9.53 0 0 0 0 0
[BestUp 3.1 0 0 0 0 0
nitPar 2.02 0 4 0 0 0

In table 1 we report some data about our CUDAPSO ob-
tained by the CUDA Profiler. In particular, columns ldu,
lde, stu and stc highlight that there are no global uncoa-
lesced read-write operations. Actually there are just few in
the posUp and fit lines: this is due to the first thread in
each block which reads/writes from/to an un-aligned vec-
tor. This does not slow the system at all, because there are
no multiple operation to be serialized. Looking at the “it”
column of table 1 we can also note that the computational
intensiveness of the PSO is not that high to saturate the
resource usage of a GPU.

Summary Plot

GPU Time (Total)
0.00% 15.76%
bestUp(9999)
posUp (9999)
fit (10000)
RGPU (500)
IBestUp (1)
fBestUp (1)
memcpy(1)
initPart (1)

31.51% 47.27%

N swarms 1
N dimensions 100

0.00% 15.76% 31.51% 47.27%
GPU Time (Total)

Figure 4: CUDAPSO: kernels’ occupancy

The last figure 4 also reports data from the profiler. It
shows, in decreasing order, the percentage of GPU occupa-
tion of all kernels. One can notice that the pseudo random
numbers generation, being the most arithmetic intensive op-
eration, takes a significant percentage of the time. Anyway,
the bestsUpdate is the more demanding kernel, probably due
to the implementation of the random topology as in 2006
standard PSO. As a matter of facts, the adoption of a global
best topology would lead to better load balance between ker-
nels and to an overall faster execution, but, at the same time,
the algorithm effectiveness in solving multi-modal problems
would certainly be affected.

4. CONCLUSIONS

All the results prove that our CUDAPSO is much more
efficient compared to a well coded serial version. The pos-
sibility to run efficiently many swarms at the same time is
another advantage that permits to improve the optimization
success rate, compared to a single serial run with comparable
execution time. Without any doubt, speedup times could be
further improved on problems with complex fitness functions
which permit a high degree of parallelization.

Finally, we want to remark that the proposed design is
modular and versatile: evolutionary steps are split into in-
dependent kernels, which makes it easy to adapt them to
different variants of the PSO algorithm. For example, the
neighborhood topology could be changed by changing the
bestsUpdate kernel. More simply, our CUDAPSO can be
adapted to the optimization of other goals by changing the
fitness evaluation kernel. These improvements will be part
of our future work.

