Population Parallel GP
on the G80 GPU |

D. Robilliard, V. Marion-Poty, C. Fonlupt
Univ. Littoral Cote d'Opale, France.

Supported by
Interreg IlIA
project 182b

GPU basics

\\,\

\4

A\

Powerful and cheap

Designed for graphics:
- likely to be available on most computers

- SIMD architecture
Suitable for generic computations

Previous works about running GP on
GPUs:

- [Harding, Banzhaf] EuroGP 2007
- Speedup not measured on full evolutionary runs

- [Chitty] GECCO 2007
- Uses a graphic API

uuuuuuuuuuu

uuuuuuuuuuu

Objectives

- Previous works showed GPU speedups:

- for large training sets: up to 65,000 cases
- for large GP trees: up to 10,000 nodes

- What about small training sets ?
- supervised training data are often costly/ difficult to collect
(e.g. medical data)
=> benchmarks using between 64 and 2048 cases

- What about "typical"” GP trees ?
- Evaluate speedups for GP trees occurring in standard
evolutionary runs

- On 3 sets of benchmarks parameters, we observed tree
sizes ranging from 30 to 208 nodes

xperimental Framewor e

- Interfacing GPU with the EC] library
- Is it possible to keep the flexibility of ECJ?
=> Only the evaluation phase will be ported on GPU
- lIsitworth it ?
=> Speedup measured for full evolutionary runs

- Hardware: nVidia GTX 8800 (G80 GPU)
- GPU language: CUDA

- Free software (although proprietary)
- Only available for the nVidia G80 family of GPUs
- Close to C language

- Several general purpose libraries available (linear algebra,
FFT, ...

- Fine grain access to the G80

G80 Architecture / GeForce 8800GTX

16 multiprocessors x 8 internal
stream processors

- =128 stream processors at 1.35 Ghz
- Other circuits at 675 Mhz

multiprocessor :

- 16 ko of fast memory shared between
stream processors

- 8 ko of texture and constant caches
- independent instruction register

stream processor :
- SIMD mode
- local memory for registers

Instruction
Unit

Execution Model

- GRID : set of computations
- a GRID is divided into BLOCKS :

»

independent subset of computations, to be
run on one multiprocessor

no fixed order of execution between
blocks:

- parallel execution if enough
multiprocessors

~ or else time sharing

BLOCK is divided into THREADS :

instances of the program (a.k.a. kernel), to
be run on the stream processors

on the G80 the number of threads on a
multiprocessor is a multiple of 32 ("warp
size")

no fixed order of execution between
threads (time sharing)

Host Device
Grid 1

s e ey
@, 0) 1, 0) @, 0)
Block Block Block
o 1) @, 1) @ 1)
E'Idl..

Y
'mmu

GP Parallel Model ?

A) Parallelizing training cases
- See e.g. [Harding, Banzhaf 07]

- Same GP program is run on all stream processors => it
can be compiled

- Training cases are divided between all stream
processors: few training cases => underexploited
stream processors

B) Parallelizing GP programs
- Increase the ALUs load...

- ... But we need to execute different programs (i.e. GP
solutions) on a SIMD machine !

- Solution: use an interpreter (see [Juillé, Pollack 97],
GP on SIMD "MASPAR")

The interpreter

- a loop fetches every instruction

- a switch processes specific instructions
- we used postfixed code with a stack (simple, no recursion)

GP Tree Postfixed translation

PUSH 3 pIogrAm index begin of program 0 begin of pmogrem 1
PUSH | N 4
ADD 3| 1|+ | 4 |* |BOEl 2 NOT| -~
PUSH 4 | i i
MUL

30 &

sp = 07 - see also [Sanders,1994]

for each instruction { for optimization of

switch (instruction) ({ interpreters :

case OPERAND: push operand;

case ADD: stack[sp-2]=stack[sp-1] e.g. desynchronize

programs/fitness cases
tstack[sp-2]1;) even on same
sp--; multiprocessor

} }

uuuuuuuuuuu

The SIMD trap: divergence

- Divergence occurs when two (or more) parallel
threads need to perform different instructions

- both threads executes the interpreter "switch"
statement on their respective GP programs, which are
different.

- => they are required to execute two different
branches of the switch

- Divergent parts of code are executed sequentially
=> efficiency loss.

- Note: even if both threads interpret the same
program, they can diverge if the function set includes
an "if" statement...

Parallelizing programs on the G80

- The G80 is SPMD rather than SIMD:
- only one program: the interpreter

- one program-counter per multiprocessor => no
divergence at the multiprocessor level

- stream processors on any given multiprocessor work in
true SIMD mode.

Implementation tip:
- Dispatch GP programs on different multiprocessors

- Share the fitness cases evaluation on the stream
processors (possible divergence depending on
function set)

_ Université du Littoral

Overview

stream procs

fffff ‘Opale

- A

Fitness cases divided into 32 subsets

AA

stream procs

I [ITTTTTTIT]
idle

ﬁ 1 thread/sp

1 thread/sp ﬁ

threads:
running
waiting
program
counter

multiproc. 0

threads:
running
Interpreter waiting
code program
\/- counter
) [| < multiproc. 1

> L/-l No divergence
Diverging

threads GP programs array

Regression problem : x°—2 x*+x°

- Function set : {+,%-,/,sin,cos,exp,log} +{constants,X}
=> no divergence

- Average tree sizes : 30 to 66
- 50 generations, averaged on 30 independent runs

Evaluation phase speedup for regression problem. Full run speedup for regression problem.
o
®
o _
. <
5 @ - O 64 fitness cases 5 _
© 1 256 fithess cases T Q- © 64 fitness cases
= o <& 1024 fitness cases £ + 256 fltpess cases
S ¥ g o & 1024 fitness cases
O I O o
@ ' —+ @
2 g 3
n o) 9 _|
—0—
o o —
100 500 2500 12500 100 500 2500 12500

population size population size

Alternative parallelization scheme

- 1 prog / block vs 1 prog / thread :
Regression (64 & 1024 fitness cases)

speedup factor

10 20 30 40

0

Full run speedup for GPU regression.

1024 f.c. 1prog/block
1024 f.c. 1prog/thread
64 f.c. 1prog/block

64 f.c. 1prog/thread

X + [>» O

speedup=1(i.e. no speedup)

| | |
500 2500 12500

population size

eeeeeeeeeee

Multiplexer 6 bits & 11 bits e

- Function set :
- functions = {And, Or, Not, If} => divergence
- terminals = {A0-A1, D0-D3} resp. {A0-A2, DO-D7}
- Average tree sizes : 112 a 157
- # Fitness Cases : 64 (Mult-6) ;: 2048 (Mult-11)

Evaluation phase speedup for multiplexer Full run speedup for multiplexer.
P —@
w —
q— —
S S .
5 @7 O multiplexer—6 13 n o multiplexer—6
= ' £ ° A multiplexer—11
o A multiplexer—11 a P
g ¥ 3 o -
[0} Q
7] @
& o - 2y S —9
speedup=1(i.e. no speedu M P
P P=1{ P P) speedup=1(i.e. no speedup)
o [= .
| | | | | ! | |
100 500 2500 12500 100 500 2500 12500

population size population size

_ Université du Littoral

Alternative parallelization scheme

-1 prog / block vs 1 prog / thread :
Multiplexer 6 & 11

Full run speedup for GPU multiplexer.

O mult—-6 1prog/block
— A mult—-6 1prog/thread
+ mult-11 1prog/block

X __mult-11 1prog/thread

fa
e .~ A A

edup=1(l.e. no speedupjg

2 3 4 5 6 7
I

speedup factor

|
I

I

0
I

| ! |
100 500 2500 12500

population size

_ Université du Littoral

{{{{{ ‘Opale

Intertwined Spirals)
- Function set :
- functions = {+,-,",/,cos,sin,lf-lte} => divergence
- terminals = {real constants, X1, X2}
- Average tree sizes : 119 a 208
- # Fitness Cases : 194
Evaluation phase speedup for intertwined spirals. Full run speedup for intertwined spirals.
'] st e v s ' T speedup 6. 7o spescup)

population size population size

Alternative parallelization scheme

- 1 prog / block vs 1 prog / thread :

]
Spirals
m —]
| - d- o
o
O
g o -
o
3
2 o -
Q
o
7)) -
D p—

Full run speedup for GPU intertwined spirals.

T =

o 1prog/block
A 1prog/thread

speedup=1(i.e. no speedup)

| | | |
100 500 2500 12500

population size

eeeeeeeeeee

_ Université du Littoral

eeeeeeeeeee

Why does speedup decreases with larger ~
populations ?

- EC) breeding cost dominates evaluation cost
when populations grow larger !

- Here for regression, 1024 fitness cases:

GPU evaluation with CPU breeding time.

v - 0o evaluation
4 evaluation + breeding

o 2
£
ol
=
= n —

o - &

| | | I
100 500 2500 12500

population size

Conclusions (l)

Parallelize programs (not only training cases)
in order to exploit a large number of
elementary processors

Use GPU architecture to achieve best speedups
... Available with all toolkits ?

Divergence reduces significantly GPU
performance

10 < speedup < 80 for small training sets and
small programs for non-diverging function sets

Best measured speed (evaluation phase,
including memory transfer + postfixed
translation): 120 millions GP nodes/s (vs 1.6
million GP nodes/s on CPU)

uuuuuuuuuuu

Conclusions (ll)

- Integration into ECJ available:
http://www-lil.univ-littoral.fr/~robillia/EuroGP08/gpuregression.tgz

- Some lessons:

- One needs to transfer data from Java to C via JNI
(efficiency loss)

- "Java is a memory hog" (S. Luke) => large
populations need HUGE memory => add even
more delay (garbage collecting,...)

- as a result, CPU breeding time dominates GPU
evaluation time for large populations...

- porting breeding on GPU would mean a major fork
from ECJ library...

